

HEPTAWATT (Plastic Package) ORDER CODE: STV9302A

Vertical Deflection Booster for 2-A_{PP}TV/Monitor Applications with 70-V Flyback Generator

Main Features

- **Power Amplifier**
- **Flyback Generator**
- Output Current up to 2 App
- **Thermal Protection**
- **Stand-by Control**

Description

The STV9302A is a vertical deflection booster designed for TV and monitor applications.

This device, supplied with up to 35 V, provides up to 2 App output current to drive the vertical deflection yoke.

The internal flyback generator delivers flyback voltages up to 70 V.

in double-supply applications, a stand-by state will be reached by stopping the (+) supply alone.

Ayy

1 Absolute Maximum Ratings

Note:1. Usually the flyback voltage is slightly more than $2 \times V_{S}$. This must be taken into consideration when setting V_{S} .

- 2. Versus pin 4
- 3. V3 is higher than V_S during the first half of the flyback pulse.
- 4. Such repetitive output peak currents are usually observed just before and after the flyback pulse.
- 5. This non-repetitive output peak current can be observed, for example, during the Switch-On/Switch-Off phases. This peak current is acceptable providing the SOA is respected (Figure 8 and Figure 9).
- 6. All pins have a reverse diode towards pin 4, these diodes should never be forward-biased.
- 7. Input voltages must not exceed the lower value of either $V_S + 2$ or 40 volts.

2 Thermal Data

3 Electrical Characteristics

($V_S = 32$ V, $T_{AMB} = 25$ °C, unless otherwise specified)

- 8. In normal applications, the peak flyback voltage is slightly greater than 2 x (V_S V_4). Therefore, (V_S - V_4) = 35 V is not allowed without special circuitry.
- 9. Refer to Figure 4, Stand-by condition.

 $\sqrt{1}$

勾

Figure 2: Measurement of V_{5H}

Figure 3: Measurement of V_{3L} and V_{5L}

4 Application Hints

The yoke can be coupled either in AC or DC.

4.1 DC-coupled Application

When DC coupled (see Figure 4), the display vertical position can be adjusted with input bias. On the other hand, 2 supply sources (V_S and - V_{EE}) are required.

A Stand-by state will be reached by switching OFF the positive supply alone. In this state, where both inputs are the same voltage as pin 2 or higher, the output will sink negligible current from the deviation coil.

Figure 4: DC-coupled Application

4.1.1 Application Hints

ky

For calculations, treat the IC as an op-amp, where the feedback loop maintains $V_1 = V_7$.

Ayy

4.1.1.1 Centering

Display will be centered (null mean current in yoke) when voltage on pin 7 is $(R_1$ is negligible):

$$
V_7 = \frac{V_M + V_m}{2} \times \left(\frac{R_2}{R_2 + R_3}\right)
$$

4.1.1.2 Peak Current

$$
I_{\mathsf{P}} = \frac{(V_M - V_m)}{2} \times \frac{R_2}{R_1 x R_3}
$$

Example: for $V_m = 2 V$, $V_M = 5 V$ and $I_P = 1 A$

Choose R₁ in the1 Ω range, for instance R₁=1 Ω

From equation of peak current: R_{2} $\frac{R_2}{R_3} = \frac{2 \times I_p \times R_1}{V_M - V_m} = \frac{2}{3}$

Then choose R₂ or R₃. For instance, if R₂ = 10 kΩ, then R₃ = 15 kΩ

Finally, the bias voltage on pin 7 should be:

$$
V_7 = \frac{V_M + V_m}{2} \times \frac{1}{1 + \frac{R_3}{R_2}} = \frac{7}{2} \times \frac{1}{2.5} = 1.4V
$$

4.1.2 Ripple Rejection

When both ramp signal and bias are provided by the same driver IC, you can gain natural rejection of any ripple caused by a voltage drop in the ground (see Figure 5), if you manage to apply the same fraction of ripple voltage to both booster inputs. For that purpose, arrange an intermediate point in the bias resistor bridge, such that $(R_8 / R_7) = (R_3 / R_2)$, and connect the bias filtering capacitor between the intermediate point and the local driver ground. Of course, $R₇$ should be connected to the booster reference point, which is the ground side of R_1 .

6/15

4.2 AC-Coupled Applications

In AC-coupled applications (See Figure 6), only one supply (V_S) is needed. The vertical position of the scanning cannot be adjusted with input bias (for that purpose, usually some current is injected or sunk with a resistor in the low side of the yoke).

Figure 6: AC-coupled Application

4.2.1 Application Hints

Gain is defined as in the previous case:

$$
I_p = \frac{V_M - V_m}{2} \times \frac{R_2}{R_1 \times R_3}
$$

Choose R₁ then either R₂ or R₃. For good output centering, V₇ must fulfill the following equation:

$$
\frac{V_S}{R_4 + R_5} = \frac{V_7 - \frac{V_M + V_m}{2}}{R_3} + \frac{V_7}{R_2}
$$

or

57

$$
V_7 \times \left(\frac{1}{R_3} + \frac{1}{R_2} + \frac{1}{R_4 + R_5} \right) = \left(\frac{V_S}{2(R_4 + R_5)} + \frac{V_M + V_M}{2 \times R_3} \right)
$$

 C_S performs an integration of the parabolic signal on C_L , therefore the amount of S correction is set by the combination of C_L and C_S .

4.3 Application with Differential-output Drivers

Certain driver ICs provide the ramp signal in differential form, as two current sources i₊ and i_ with opposite variations.

Figure 7: Using a Differential-output Driver

Let us set some definitions:

- \bullet i_{cm} is the common-mode current: i_{cm} 1 $=\frac{1}{2}$ (i₊ + i₋)
- at peak of signal, $i_+ = i_{cm} + i_p$ and $i_-= i_{cm} i_p$, therefore the peak differential signal is i_p (i_p) = 2 i_p , and the peak-peak differential signal, 4 i_p .

The application is described in Figure 7 with DC yoke coupling. The calculations still rely on the fact that V_1 remains equal to V_7 .

4.3.1 Centring

When idle, both driver outputs provide i_{cm} and the yoke current should be null (R_1 is negligible), hence:

 $i_{cm} \cdot R_7 = i_{cm} \cdot R_2$ therefore $R_7 = R_2$

4.3.2 Peak Current

Scanning current should be I_P when positive and negative driver outputs provide respectively

i_{cm} - i_p and i_{cm} + i_p, therefore

 $(i_{cm} - i) \cdot R_7 = I_p \cdot R_1 + (i_{cm} + i) \cdot R_2$ and since $R_7 = R_2$: I_p $\frac{I_p}{i} = -\frac{2R}{R_4}$ $=-\frac{1}{R_1}$

Choose R₁ in the 1Ω range, the value of R₂ = R₇ follows. Remember that i is one-quarter of driver peak-peak differential signal! Also check that the voltages on the driver outputs remain inside allowed range.

■ Example: for $i_{cm} = 0.4$ mA, $i = 0.2$ mA (corresponding to 0.8mA of peak-peak differential current), $I_p = 1A$

Choose R₁ = 0.75 Ω , it follows R₂ = R₇ = 1.875k Ω .

4.3.3 Ripple Rejection

ÁV/

Make sure to connect R_7 directly to the ground side of R_1 .

4.3.4 Secondary Breakdown Diagrams

Figure 8: Output Transistor Safe Operating Area (SOA) for Secondary Breakdown

The diagram has been arbitrarily limited to max VS (35 V) and max I0 (2 A).

Figure 9: Secondary Breakdown Temperature Derating Curve (ISB = Secondary Breakdown Current)

5 Mounting Instructions

The power dissipated in the circuit is removed by adding an external heatsink. With the HEPTAWATT™ package, the heatsink is simply attached with a screw or a compression spring (clip).

A layer of silicon grease inserted between heatsink and package optimizes thermal contact. In DCcoupled applications we recommend to use a silicone tape between the device tab and the heatsink to electrically isolate the tab.

6 Pin Configuration

Figure 11: Pins 1 and 7

Figure 12: Pin 3 & Pins 5 and 6

7 Package Mechanical Data

Figure 13: 7-pin Heptawatt Package

Table 1: Heptawatt Package

Table 1: Heptawatt Package (Continued)

8 Revision History

Table 2: Summary of Modifications

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com

