#### 1 Features

- Outdoor units for pair application
- Daikin outdoor units are neat and sturdy and can be mounted easily on a roof or terrace or simply placed against an outside wall.
- Outdoor units are fitted with a swing compressor, renowned for its low noise and high energy efficiency





## 2 Specifications

| 2-1 NOMII<br>NOMINAL II                               | NAL CAPAC             | TY AND      |     | RYN50E3V1B | RYN60E3V1B |
|-------------------------------------------------------|-----------------------|-------------|-----|------------|------------|
| For<br>combination<br>indoor units +<br>outdoor units | Indoor Units          |             |     | FTYN50EV1B | FTYN60EV1B |
| Cooling<br>capacity                                   | Standard              | kW          |     | 5.0        | 6.0        |
| Heating<br>capacity                                   | Standard              | kW          |     | 5.8        | 7.0        |
| Nominal input                                         | Cooling               | Standard    | kW  | 1.55       | 1.99       |
|                                                       | Heating               | Standard    | kW  | 1.60       | 2.04       |
| For                                                   | EER                   | Nominal     |     | 3.23       | 3.02       |
| combination                                           | COP                   | Nominal     |     | 3.63       | 3.43       |
| indoor units +<br>outdoor units                       | Energy                | Cooling     |     | A          | В          |
|                                                       | Labeling<br>Directive | Heating     |     | A          | В          |
|                                                       | Annual energy         | consumption | kWh | 775        | 995        |
|                                                       | Indoor Units          |             |     | FTYN50FV1B | FTYN60FV1B |
| Cooling<br>capacity                                   | Standard              | kW          |     | 5.0        | 6.0        |
| Heating<br>capacity                                   | Standard              | kW          |     | 5.8        | 7.0        |
| Nominal input                                         | Cooling               | Standard    | kW  | 1.55       | 1.99       |
|                                                       | Heating               | Standard    | kW  | 1.60       | 2.04       |
| For                                                   | EER                   | Nominal     |     | 3.23       | 3.02       |
| combination                                           | COP                   | Nominal     |     | 3.63       | 3.43       |
| indoor units +<br>outdoor units                       | Energy                | Cooling     |     | A          | В          |
|                                                       | Labeling<br>Directive | Heating     |     | A          | В          |
|                                                       | Annual energy         | consumption | kWh | 775        | 995        |

| 2-2 TECH   | INICAL SPECI      | FICATION   | ١S     | RYN50E3V1B     | RYN60E3V1B     |
|------------|-------------------|------------|--------|----------------|----------------|
| Casing     | Colour            |            |        | lvory          | White          |
| Dimensions | Unit              | Height     | mm     | 735            | 735            |
|            |                   | Width      | mm     | 825            | 825            |
|            |                   | Depth      | mm     | 300            | 300            |
|            | Packing           | Height     | mm     | 797            | 797            |
|            |                   | Width      | mm     | 960            | 960            |
|            |                   | Depth      | mm     | 390            | 390            |
| Weight     | Unit              |            | kg     | 48             | 48             |
|            | Packed Unit       |            | kg     | 53             | 53             |
| Heat       | Dimensions        | Length     | mm     | 845            | 845            |
| Exchanger  |                   | Nr of Row  | S      | 2              | 2              |
|            |                   | Fin Pitch  | mm     | 1.80           | 1.80           |
|            |                   | Nr of Stag | es     | 32             | 32             |
|            | Tube type         |            |        | Hi->           | Ka(8)          |
|            | Fin               | Туре       |        | Waf            | fle fin        |
|            |                   | Treatment  |        | Anti-corrosion | treatment (PE) |
| Fan        | Туре              |            |        | Prop           | peller         |
|            | Quantity          |            |        | 1              | 1              |
|            | Air Flow Rate     | Cooling    | m³/min | 48.9           | 50.9           |
|            | (nominal at 230V) | Heating    | m³/min | 45.0           | 46.3           |
|            | Motor             | Quantity   | •      | 1              | 1              |
|            |                   | Model      |        | KFD-38         | 0-50-8A        |
| Motor      | Speed             | Cooling    | rpm    | 780            | 810            |
|            | (nominal)         | Heating    | rpm    | 720            | 740            |
| Fan        | Motor             | Output     | W      | 53             | 53             |

## 2 Specifications

| 2-2 TECH                 | NICAL SPECI                | FICATION          | IS   | RYN50E3V1B                                                                                 | RYN60E3V1B                                        |
|--------------------------|----------------------------|-------------------|------|--------------------------------------------------------------------------------------------|---------------------------------------------------|
| Compressor               | Quantity                   |                   |      | 1                                                                                          | 1                                                 |
|                          | Motor                      | Model             |      | 2YC36                                                                                      | BXD#A                                             |
|                          |                            | Туре              |      | Hermetically sealed                                                                        | swing compressor                                  |
|                          |                            | Motor<br>Output   | W    | 1100                                                                                       | 1100                                              |
| Operation                | Cooling                    | Min               | °CDB | -10.0                                                                                      | -10.0                                             |
| Range                    | -                          | Max               | °CDB | 46.0                                                                                       | 46.0                                              |
|                          | Heating                    | Min               | °CWB | -15                                                                                        | -15                                               |
|                          | _                          | Max               | °CWB | 18                                                                                         | 18                                                |
| Sound Level<br>(nominal) | Cooling                    | Sound<br>Power    | dBA  | 61.0                                                                                       | 63.0                                              |
| . ,                      |                            | Sound<br>Pressure | dBA  | 47.0                                                                                       | 49.0                                              |
|                          | Heating                    | Sound<br>Pressure | dBA  | 48.0                                                                                       | 49.0                                              |
| Refrigerant              | Туре                       |                   |      | R-4                                                                                        | 10A                                               |
| 0                        | Charge                     |                   | kg   | 1.5                                                                                        | 1.5                                               |
| Refrigerant Oil          | Туре                       |                   |      | FVC                                                                                        | 50K                                               |
| Ū                        | Charged Volum              | е                 | 1    | 0.65                                                                                       | 065                                               |
| Piping<br>connections    | Liquid (OD)                | Diameter<br>(OD)  | mm   | 6.35                                                                                       | 6.35                                              |
|                          | Gas                        | Diameter<br>(OD)  | mm   | 12.7                                                                                       | 12.7                                              |
|                          | Drain                      | Diameter<br>(OD)  | mm   | 18                                                                                         | 18                                                |
|                          | Piping Length              | Maximum           | m    | 30                                                                                         | 30                                                |
|                          | Additional Refri           | gerant            | kg/m | 0.02/:                                                                                     | >10m                                              |
|                          | Max. internunit difference | level             | m    | 20.0                                                                                       | 20.0                                              |
|                          | Heat Insulation            |                   |      | Both liquid a                                                                              | nd gas pipes                                      |
| Standard                 | Item                       |                   |      | Drain                                                                                      | plug                                              |
| Accessories              | Quantity                   |                   |      | 1                                                                                          | 1                                                 |
|                          | Item                       |                   |      | Installatio                                                                                | n manual                                          |
|                          | Quantity                   |                   |      | 1                                                                                          | 1                                                 |
| Notes                    |                            |                   |      | Nominal cooling capacities are based on : indoor temperat<br>equivalent refrigerant piping |                                                   |
|                          |                            |                   |      | Nominal heating capacities are based on : indoor temper<br>equivalent refrigerant piping   | ature : 200CDB, outdoor temperature : 70CDB, 60CW |
|                          |                            |                   |      | Sound levels are measu                                                                     |                                                   |
|                          |                            |                   |      | Sound pressure level is a relative value, depending on the please refer to sound level     |                                                   |
|                          |                            |                   |      | The sound power level is an absolute value indica                                          |                                                   |

| 2-3 ELEC     | TRICAL SPEC                | IFICATIO       | NS | RYN50E3V1B | RYN60E3V1B |
|--------------|----------------------------|----------------|----|------------|------------|
| Power Supply | Name                       |                |    | V          | 1          |
|              | Phase                      |                |    | 1          | 1          |
|              | Frequency                  |                | Hz | 50         | 50         |
|              | Voltage                    |                | V  | 220-       | 240        |
|              | Voltage range              | Minimum        | V  | -1(        | 9%         |
|              |                            | Maximum        | V  | +10        | D%         |
| Current      | Nominal<br>running current | Cooling<br>(A) | A  | 6.75       | 8.62       |
|              | (RLA)                      | Heating<br>(A) | A  | 6.94       | 8.80       |
|              | Starting current heating)  | (cooling/      | A  | 7.1        | 9.0        |
|              | Z-max                      | List           | •  | No requi   | rements    |

## 2 Specifications

| 2-3 ELECT             | <b>RICAL SPEC</b>   | IFICATIONS | RYN50E3V1B  | RYN60E3V1B  |
|-----------------------|---------------------|------------|-------------|-------------|
| Wiring<br>connections | For Power<br>Supply | Quantity   | 3           | 3           |
|                       | For connection      | Quantity   | 4           | 4           |
|                       | with indoor         | Remark     | Including e | arth wiring |
| Power Supply In       | take                |            | Outdoor     | unit only   |

#### 3 Features



#### 4 - 1 Cooling/Heating capacity tables

| TYN5         |             | N50E                 |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      | AFR                  |                       | 14                    | 1.7                |
|--------------|-------------|----------------------|--------------|----------------------------|--------------|----------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|------------------------------------|--------------------------------|-----------------------|----------------------|----------------------|-----------------------|-----------------------|--------------------|
| ooling       |             |                      |              |                            |              |                            |                   | 5                                                                                                                                                                                                                                                                                                                                         |              | 20-240\      |              |                                    |                                |                       |                      | BF                   |                       |                       | 28                 |
| Indo         |             |                      | 20           |                            |              | 25                         |                   |                                                                                                                                                                                                                                                                                                                                           | 0u           | tdoor temp   | erature (°CI |                                    |                                |                       | 25                   |                      |                       | 10                    |                    |
| EWB<br>(°C)  | EDB<br>(°C) | TC                   | 20<br>SHC    | PI                         | TC           | 25<br>SHC                  | PI                | TC                                                                                                                                                                                                                                                                                                                                        | 30<br>SHC    | PI           | TC           | 32<br>SHC                          | PI                             | TC                    | 35<br>SHC            | PI                   | TC                    | 40<br>SHC             | PI                 |
| 14.0         | 20          | 5.12                 | 3.61         | 1.19                       | 4.89         | 3.49                       | 1.30              | 4.66                                                                                                                                                                                                                                                                                                                                      | 3.37         | 1.42         | 4.56         | 3.32                               | 1.46                           | 4.42                  | 3.25                 | 1.53                 | 4.19                  | 3.13                  | 1.65               |
| 16.0         | 22          | 5.35                 | 3.55         | 1.20                       | 5.12         | 3.43                       | 1.31              | 4.89                                                                                                                                                                                                                                                                                                                                      | 3.32         | 1.43         | 4.79         | 3.27                               | 1.47                           | 4.65                  |                      | 1.54                 | 4.42                  | 3.10                  | 1.65               |
| 18.0         | 25          | 5.58                 | 3.69         | 1.20                       | 5.35         | 3.58                       | 1.32              | 5.12                                                                                                                                                                                                                                                                                                                                      | 3.47         | 1.43         | 5.02         | 3.43                               | 1.48                           | 4.88                  | 3.37                 | 1.55                 | 4.65                  | 3.26                  | 1.66               |
| 19.0         | 27<br>30    | 5.70<br>6.04         | 3.86<br>3.71 | 1.21                       | 5.47<br>5.81 | 3.75<br>3.62               | 1.32              | 5.23<br>5.58                                                                                                                                                                                                                                                                                                                              | 3.65<br>3.52 | 1.44         | 5.14<br>5.49 | 3.61                               | 1.48                           | <b>5.00</b> 5.35      |                      | 1.55                 | 4.77                  | 3.45<br>3.35          | 1.66               |
| 22.0<br>24.0 | 30          | 6.27                 | 3.60         | 1.22                       | 6.04         | 3.52                       | 1.33              | 5.81                                                                                                                                                                                                                                                                                                                                      | 3.52         | 1.45         | 5.72         | 3.49<br>3.40                       | 1.49                           | 5.58                  | 3.43                 | 1.56<br>1.57         | 5.11<br>5.34          | 3.35                  | 1.67               |
| eating       | •           |                      | 5(           | 0Hz 220                    |              |                            |                   | AFR                                                                                                                                                                                                                                                                                                                                       |              | 1            | 6.1          | ]                                  |                                |                       |                      |                      |                       |                       |                    |
| Indo<br>ED   |             |                      | 10           |                            | 0u<br>5      | tdoor temp                 | erature (°C\<br>0 |                                                                                                                                                                                                                                                                                                                                           | 6            |              | 10           | -                                  |                                |                       |                      |                      |                       |                       |                    |
| (°(          |             | TC -                 | PI           | TC                         | D<br>Pl      | TC                         | PI                | TC                                                                                                                                                                                                                                                                                                                                        | o<br>Pl      | TC           | PI           | 1                                  |                                |                       |                      |                      |                       |                       |                    |
| 15.          |             | 3.90                 | 1.35         | 4.56                       | 1.42         | 5.21                       | 1.48              | 6.00                                                                                                                                                                                                                                                                                                                                      | 1.56         | 6.52         | 1.62         | İ                                  |                                |                       |                      |                      |                       |                       |                    |
| 20           |             | 3.70                 | 1.39         | 4.36                       | 1.46         | 5.01                       | 1.52              | 5.80                                                                                                                                                                                                                                                                                                                                      | 1.60         | 6.32         | 1.65         |                                    |                                |                       |                      |                      |                       |                       |                    |
| 22           |             | 3.62                 | 1.40         | 4.28                       | 1.47         | 4.93                       | 1.54              | 5.72                                                                                                                                                                                                                                                                                                                                      | 1.61         | 6.24         | 1.67         |                                    |                                |                       |                      |                      |                       |                       |                    |
| 24<br>25     |             | 3.54<br>3.50         | 1.42         | <b>4.20</b><br><b>4.16</b> | 1.48<br>1.49 | <b>4.85</b><br><b>4.81</b> | 1.55<br>1.56      | 5.64<br>5.60                                                                                                                                                                                                                                                                                                                              | 1.63<br>1.64 | 6.16<br>6.12 | 1.68<br>1.69 |                                    |                                |                       |                      |                      |                       |                       |                    |
| 27           |             | 3.42                 | 1.44         | 4.08                       | 1.51         | 4.73                       | 1.57              | 5.52                                                                                                                                                                                                                                                                                                                                      | 1.65         | 6.04         | 1.70         |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              | 3D           | 0519234      | 4                                  |                                |                       |                      |                      |                       |                       |                    |
|              | cvi         | MBOLS                |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           | -            |              | NOT          | FEC                                |                                |                       |                      |                      |                       |                       |                    |
| R:           | Air flov    |                      | 2            |                            |              |                            | (r                | m <sup>3</sup> /min)                                                                                                                                                                                                                                                                                                                      | 1            |              |              |                                    | un ara n                       | ot capa               | cition wh            | ich inclu            | ido a de              | eduction              | for                |
|              | Bypass      | factor               |              |                            |              |                            | (i                | 11 /11 11 1                                                                                                                                                                                                                                                                                                                               |              |              |              |                                    | notor he                       |                       |                      |                      |                       | Eduction              | 101                |
|              |             | g wet b<br>g dry bu  |              |                            |              |                            |                   | °C)                                                                                                                                                                                                                                                                                                                                       | 2            | 2            |              |                                    | shows                          | nominal               | (rated)              | capaciti             | es and p              | oower in              | put.               |
| C:           | Total c     | apacity<br>le heatin |              |                            |              |                            | (k<br>(k          | <w)<br><w)<br><w)< td=""><td>3</td><td>3</td><td>in the</td><td>l and SH<br/>above<br/>lation.)</td><td>HC must<br/>tables.(</td><td>be calc<br/>Figures</td><td>ulated b<br/>out of t</td><td>y interp<br/>ne table</td><td>olation (<br/>s should</td><td>using the<br/>d not be</td><td>e figure<br/>used t</td></w)<></w)<br></w)<br> | 3            | 3            | in the       | l and SH<br>above<br>lation.)      | HC must<br>tables.(            | be calc<br>Figures    | ulated b<br>out of t | y interp<br>ne table | olation (<br>s should | using the<br>d not be | e figure<br>used t |
|              |             | I                    |              |                            |              |                            | ,                 | ,                                                                                                                                                                                                                                                                                                                                         | Z            |              | them         | n with a                           | round va                       | alues in              | direct pr            | oportio              | י.                    | olease ca             | lculate            |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           | 5            | 5            | Corre        | icities ar<br>espondi<br>I differe | re based<br>ng refrig<br>ence: | on follo<br>Jerant pi | owing co<br>ping len | ondition:<br>gth:    | 5:                    |                       | 5 m<br>m           |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           | 6            | 5            | Air fl       | ow rate                            | (AFR) a                        | nd Bypa               | ss facto             | r (BF) ar            | e tabura              | ated abo              | ve.                |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |
|              |             |                      |              |                            |              |                            |                   |                                                                                                                                                                                                                                                                                                                                           |              |              |              |                                    |                                |                       |                      |                      |                       |                       |                    |

#### 4 - 1 Cooling/Heating capacity tables

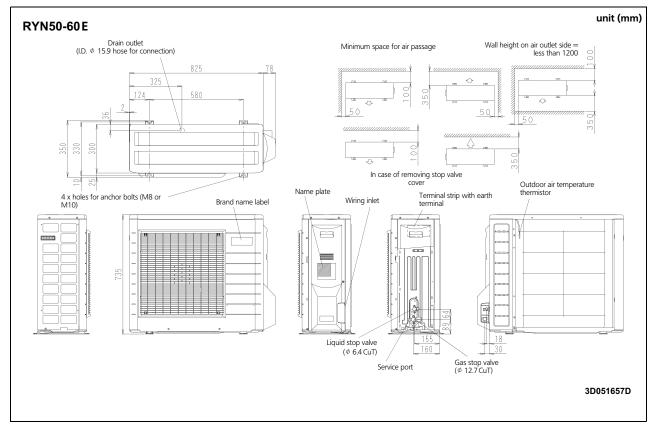
FTYN50FV1B+RYN50E3V1B

| PO       PC       FIC       SHC       PI       TC       SI       Add       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOHz 220-240V         BF         0.28           Outdoor temperature (°CDB)           30         32         35         40           IC         SHC         P         IC         SHC         P         TC         SHC         P           30         4.66         3.37         1.42         4.56         3.32         1.46         4.42         3.25         1.53         4.19         3.13         1.65           31         4.89         3.32         1.43         4.79         3.27         1.47         4.65         3.21         1.54         4.42         3.10         1.65           32         5.12         3.47         1.43         5.02         3.43         1.48         4.88         3.37         1.55         4.65         3.26         1.66           32         5.58         3.52         1.44         5.14         3.61         1.48         5.00         3.55         1.55         4.77         3.45         1.66           33         5.58         3.52         1.56         6.11         3.35         1.67           34         5.00         1.56         6.52         1.62         3.55         3.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | boling         50Hz 220-240V         js         0.28           itor         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </th <th>Indoor<br/>EWB<br/>(°C)<br/>14.0<br/>16.0<br/>18.0<br/>19.0<br/>22.0</th> <th>EDB<br/>(°C)<br/>20<br/>22<br/>25<br/>27<br/>30</th> <th>5.12<br/>5.35<br/>5.58<br/>5.70</th> <th>SHC<br/>3.61<br/>3.55<br/>3.69</th> <th>1.19<br/>1.20</th> <th>4.89</th> <th>SHC<br/>3.49</th> <th></th> <th>TC</th> <th>Out<br/>30<br/>SHC</th> <th>door tempe<br/>Pl</th> <th>erature (°CD<br/>TC</th> <th>32</th> <th>PI</th> <th>TC</th> <th></th> <th>BF</th> <th>TC</th> <th>40</th> <th>28</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Indoor<br>EWB<br>(°C)<br>14.0<br>16.0<br>18.0<br>19.0<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EDB<br>(°C)<br>20<br>22<br>25<br>27<br>30 | 5.12<br>5.35<br>5.58<br>5.70       | SHC<br>3.61<br>3.55<br>3.69             | 1.19<br>1.20                       | 4.89                                           | SHC<br>3.49                        |                                                                | TC                                | Out<br>30<br>SHC                   | door tempe<br>Pl                   | erature (°CD<br>TC                      | 32       | PI                  | TC                   |                      | BF                   | TC                    | 40                  | 28             |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|-----------------------------------------|------------------------------------|------------------------------------------------|------------------------------------|----------------------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------|-----------------------------------------|----------|---------------------|----------------------|----------------------|----------------------|-----------------------|---------------------|----------------|-----|
| EWB       20       25       30       32       35       40         PO       PO       TC       SPC       P       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30         32         35         40           TC         SHC         P         TC         SHC         SI         TC         SI         SI<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MB       BB       20       25       30       32       35       40         C0       C0       C1       SHC       R       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EWB<br>(°C)<br>14.0<br>16.0<br>18.0<br>19.0<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EDB<br>(°C)<br>20<br>22<br>25<br>27<br>30 | 5.12<br>5.35<br>5.58<br>5.70       | SHC<br>3.61<br>3.55<br>3.69             | 1.19<br>1.20                       | 4.89                                           | SHC<br>3.49                        |                                                                |                                   | 30<br>SHC                          | PI                                 | TC                                      | 32       | PI                  | TC                   |                      | PI                   | TC                    |                     | DI             |     |
| NM       DB       20       25       30       32       35       40         QC       QC       TC       SKC       P       TC       SKC       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30         32         35         40           TC         SHC         PI         TC         SI         TC         SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MB       BB       20       25       30       32       35       40         C0       C0       C1       SK       R       C       SK       R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (°C)<br>14.0<br>16.0<br>18.0<br>19.0<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (°C)<br>20<br>22<br>25<br>27<br>30        | 5.12<br>5.35<br>5.58<br>5.70       | SHC<br>3.61<br>3.55<br>3.69             | 1.19<br>1.20                       | 4.89                                           | SHC<br>3.49                        |                                                                |                                   | 30<br>SHC                          | PI                                 | TC                                      | 32       | PI                  | TC                   |                      | PI                   | TC                    |                     | DI             |     |
| 14.0       20       5.12       3.61       1.19       4.89       3.49       1.30       4.66       3.37       1.42       4.56       3.32       1.46       4.42       3.25       1.53       4.19       3.1         16.0       22       5.58       3.55       1.20       5.35       3.58       1.32       5.12       3.43       1.43       4.79       3.27       1.47       4.66       5.32       1.55       4.66       3.27       1.43       4.79       3.27       1.47       4.65       3.21       1.54       4.42       3.1       1.60       22       5.58       3.65       1.43       5.02       3.43       1.48       4.88       3.37       1.55       4.65       3.2       1.43       1.43       5.02       3.43       1.48       4.66       3.7       1.42       4.56       3.22       1.43       1.43       5.02       3.43       1.46       4.88       3.33       1.55       4.65       3.2       1.43       1.43       5.02       3.43       1.46       4.42       3.25       1.43       1.43       1.45       5.72       3.40       1.40       5.35       1.55       4.65       3.2       1.65       1.61       1.55       5.56 <td>30       4.66       3.37       1.42       4.56       3.32       1.46       4.42       3.25       1.53       4.19       3.13       1.68         31       4.89       3.32       1.43       4.79       3.27       1.47       4.65       3.21       1.54       4.42       3.10       1.68         32       5.12       3.47       1.43       5.02       3.43       1.48       4.88       3.37       1.55       4.65       3.26       1.61         32       5.23       3.65       1.44       5.14       3.61       1.48       4.88       3.37       1.55       4.65       3.26       1.61         33       5.58       3.52       1.45       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.35       1.67         34       5.81       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.66         36       5.60       1.64       6.12       1.69       57       5.52       1.65       6.04       1.70         3D051923A         NOTES          <th cols<="" td=""><td>4.0       20       5.12       3.61       1.19       4.89       3.49       1.30       4.66       3.37       1.42       4.56       3.32       1.46       4.42       3.25       1.53       4.19       3.13       1.66         6.0       22       5.35       3.55       1.20       5.12       3.43       1.31       4.86       3.32       1.43       4.79       3.27       1.47       4.65       3.21       1.54       4.42       3.10       1.66         9.0       27       5.70       3.86       1.21       5.47       3.75       1.32       5.23       3.65       1.44       5.14       3.61       1.48       8.00       3.55       1.55       4.51       3.65       1.56       4.77       3.45       1.66         2.0       3.0       6.04       3.71       1.22       5.61       3.52       1.44       5.49       3.49       1.49       5.35       3.43       1.66       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.66         20.0       3.70       1.38       4.56       1.42       5.72       1.61       6.52       1.62       1.62       1.62       1.55</td><td>14.0<br/>16.0<br/>18.0<br/>19.0<br/>22.0</td><td>20<br/>22<br/>25<br/>27<br/>30</td><td>5.12<br/>5.35<br/>5.58<br/>5.70</td><td>3.61<br/>3.55<br/>3.69</td><td>1.19<br/>1.20</td><td>4.89</td><td>3.49</td><td></td><td></td><td></td><td></td><td></td><td>SHC</td><td>PI</td><td></td><td>SHC</td><td>PI</td><td></td><td>SHC</td><td></td></th></td> | 30       4.66       3.37       1.42       4.56       3.32       1.46       4.42       3.25       1.53       4.19       3.13       1.68         31       4.89       3.32       1.43       4.79       3.27       1.47       4.65       3.21       1.54       4.42       3.10       1.68         32       5.12       3.47       1.43       5.02       3.43       1.48       4.88       3.37       1.55       4.65       3.26       1.61         32       5.23       3.65       1.44       5.14       3.61       1.48       4.88       3.37       1.55       4.65       3.26       1.61         33       5.58       3.52       1.45       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.35       1.67         34       5.81       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.66         36       5.60       1.64       6.12       1.69       57       5.52       1.65       6.04       1.70         3D051923A         NOTES <th cols<="" td=""><td>4.0       20       5.12       3.61       1.19       4.89       3.49       1.30       4.66       3.37       1.42       4.56       3.32       1.46       4.42       3.25       1.53       4.19       3.13       1.66         6.0       22       5.35       3.55       1.20       5.12       3.43       1.31       4.86       3.32       1.43       4.79       3.27       1.47       4.65       3.21       1.54       4.42       3.10       1.66         9.0       27       5.70       3.86       1.21       5.47       3.75       1.32       5.23       3.65       1.44       5.14       3.61       1.48       8.00       3.55       1.55       4.51       3.65       1.56       4.77       3.45       1.66         2.0       3.0       6.04       3.71       1.22       5.61       3.52       1.44       5.49       3.49       1.49       5.35       3.43       1.66       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.66         20.0       3.70       1.38       4.56       1.42       5.72       1.61       6.52       1.62       1.62       1.62       1.55</td><td>14.0<br/>16.0<br/>18.0<br/>19.0<br/>22.0</td><td>20<br/>22<br/>25<br/>27<br/>30</td><td>5.12<br/>5.35<br/>5.58<br/>5.70</td><td>3.61<br/>3.55<br/>3.69</td><td>1.19<br/>1.20</td><td>4.89</td><td>3.49</td><td></td><td></td><td></td><td></td><td></td><td>SHC</td><td>PI</td><td></td><td>SHC</td><td>PI</td><td></td><td>SHC</td><td></td></th> | <td>4.0       20       5.12       3.61       1.19       4.89       3.49       1.30       4.66       3.37       1.42       4.56       3.32       1.46       4.42       3.25       1.53       4.19       3.13       1.66         6.0       22       5.35       3.55       1.20       5.12       3.43       1.31       4.86       3.32       1.43       4.79       3.27       1.47       4.65       3.21       1.54       4.42       3.10       1.66         9.0       27       5.70       3.86       1.21       5.47       3.75       1.32       5.23       3.65       1.44       5.14       3.61       1.48       8.00       3.55       1.55       4.51       3.65       1.56       4.77       3.45       1.66         2.0       3.0       6.04       3.71       1.22       5.61       3.52       1.44       5.49       3.49       1.49       5.35       3.43       1.66       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.66         20.0       3.70       1.38       4.56       1.42       5.72       1.61       6.52       1.62       1.62       1.62       1.55</td> <td>14.0<br/>16.0<br/>18.0<br/>19.0<br/>22.0</td> <td>20<br/>22<br/>25<br/>27<br/>30</td> <td>5.12<br/>5.35<br/>5.58<br/>5.70</td> <td>3.61<br/>3.55<br/>3.69</td> <td>1.19<br/>1.20</td> <td>4.89</td> <td>3.49</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SHC</td> <td>PI</td> <td></td> <td>SHC</td> <td>PI</td> <td></td> <td>SHC</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.0       20       5.12       3.61       1.19       4.89       3.49       1.30       4.66       3.37       1.42       4.56       3.32       1.46       4.42       3.25       1.53       4.19       3.13       1.66         6.0       22       5.35       3.55       1.20       5.12       3.43       1.31       4.86       3.32       1.43       4.79       3.27       1.47       4.65       3.21       1.54       4.42       3.10       1.66         9.0       27       5.70       3.86       1.21       5.47       3.75       1.32       5.23       3.65       1.44       5.14       3.61       1.48       8.00       3.55       1.55       4.51       3.65       1.56       4.77       3.45       1.66         2.0       3.0       6.04       3.71       1.22       5.61       3.52       1.44       5.49       3.49       1.49       5.35       3.43       1.66       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.66         20.0       3.70       1.38       4.56       1.42       5.72       1.61       6.52       1.62       1.62       1.62       1.55                                                                                       | 14.0<br>16.0<br>18.0<br>19.0<br>22.0      | 20<br>22<br>25<br>27<br>30         | 5.12<br>5.35<br>5.58<br>5.70            | 3.61<br>3.55<br>3.69               | 1.19<br>1.20                                   | 4.89                               | 3.49                                                           |                                   |                                    |                                    |                                         |          | SHC                 | PI                   |                      | SHC                  | PI                    |                     | SHC            |     |
| 16.0       22       5.35       3.55       1.20       5.12       3.43       1.31       4.89       3.32       1.43       4.79       3.27       1.47       4.65       3.21       1.54       4.42       3.1         18.0       25       5.83       3.69       1.20       5.37       3.58       1.32       5.12       3.47       1.43       5.02       3.42       1.48       4.88       3.37       1.55       4.66       3.2         19.0       27       5.70       3.86       1.21       5.47       3.75       1.32       5.23       3.65       1.44       5.14       3.61       1.48       5.00       3.55       1.55       5.34       3.55       1.41       5.14       3.61       1.48       5.00       3.55       1.43       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.2         20.0       3.70       1.33       4.36       1.60       1.56       6.52       1.62       1.65       1.42       5.21       1.48       6.00       1.66       1.62       1.65       1.62       1.65       1.62       1.65       1.62       1.65       1.62       1.65       1.62 <td>31       4.89       3.32       1.43       4.79       3.27       1.47       4.65       3.21       1.54       4.42       3.10       1.63         32       5.12       3.47       1.43       5.02       3.43       1.48       4.88       3.37       1.55       4.65       3.26       1.61         32       5.12       3.47       1.43       5.02       3.43       1.48       4.88       3.37       1.55       4.65       3.26       1.61         32       5.58       3.52       1.45       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.35       1.61         33       5.58       3.52       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.61         34       5.72       1.61       6.52       1.62       5.58       3.35       1.57       5.34       3.27       1.61         5       5.64       1.63       6.16       1.68       5       5.52       1.65       6.04       1.70         3D051923A       A       NOTES         (m<sup>3</sup>/min)       1       Ratings</td> <td>6.0       22       5.35       3.55       1.20       5.12       3.43       1.31       4.89       3.32       1.43       4.79       3.27       1.47       4.65       3.21       1.54       4.42       3.10       1.68         8.0       25       5.58       8.09       1.20       5.35       3.58       1.32       5.12       3.47       1.43       5.02       3.43       1.48       4.88       3.37       1.55       4.66       3.22       1.55       4.77       3.45       1.66       3.21       1.47       5.44       3.43       1.48       4.88       3.37       1.55       4.77       3.45       1.66       3.21       1.48       4.88       3.37       1.55       4.77       3.45       1.66       3.52       1.44       5.44       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.48       4.88       3.35       1.66       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.61         Mot       Outdot temperature (°C/0)       I       R       I       R       I.66       1.62       <th1.62< th="">       1.62       1.62</th1.62<></td> <td>16.0<br/>18.0<br/>19.0<br/>22.0</td> <td>22<br/>25<br/>27<br/>30</td> <td>5.35<br/>5.58<br/>5.70</td> <td>3.55<br/>3.69</td> <td>1.20</td> <td></td> <td></td> <td>1.30</td> <td>1 66</td> <td></td>            | 31       4.89       3.32       1.43       4.79       3.27       1.47       4.65       3.21       1.54       4.42       3.10       1.63         32       5.12       3.47       1.43       5.02       3.43       1.48       4.88       3.37       1.55       4.65       3.26       1.61         32       5.12       3.47       1.43       5.02       3.43       1.48       4.88       3.37       1.55       4.65       3.26       1.61         32       5.58       3.52       1.45       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.35       1.61         33       5.58       3.52       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.61         34       5.72       1.61       6.52       1.62       5.58       3.35       1.57       5.34       3.27       1.61         5       5.64       1.63       6.16       1.68       5       5.52       1.65       6.04       1.70         3D051923A       A       NOTES         (m <sup>3</sup> /min)       1       Ratings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.0       22       5.35       3.55       1.20       5.12       3.43       1.31       4.89       3.32       1.43       4.79       3.27       1.47       4.65       3.21       1.54       4.42       3.10       1.68         8.0       25       5.58       8.09       1.20       5.35       3.58       1.32       5.12       3.47       1.43       5.02       3.43       1.48       4.88       3.37       1.55       4.66       3.22       1.55       4.77       3.45       1.66       3.21       1.47       5.44       3.43       1.48       4.88       3.37       1.55       4.77       3.45       1.66       3.21       1.48       4.88       3.37       1.55       4.77       3.45       1.66       3.52       1.44       5.44       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.48       4.88       3.35       1.66       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.61         Mot       Outdot temperature (°C/0)       I       R       I       R       I.66       1.62 <th1.62< th="">       1.62       1.62</th1.62<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.0<br>18.0<br>19.0<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22<br>25<br>27<br>30                      | 5.35<br>5.58<br>5.70               | 3.55<br>3.69                            | 1.20                               |                                                |                                    | 1.30                                                           | 1 66                              |                                    |                                    |                                         |          |                     |                      |                      |                      |                       |                     |                |     |
| 18.0       25       5.58       3.69       1.20       5.35       3.58       1.32       5.12       3.47       1.43       5.02       3.43       1.48       4.88       3.37       1.55       4.66       3.2         19.0       27       5.70       3.86       1.21       5.47       3.75       1.32       5.23       3.65       1.44       5.44       3.61       1.48       5.00       3.55       4.57       3.43         22.0       30       6.04       3.71       1.22       5.81       3.62       1.33       5.58       3.52       1.44       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.2         4eating       50Hz 220-240V       AR       161       6       10       5.58       3.35       1.57       5.34       3.2         150       3.90       1.35       4.56       1.42       5.72       1.66       6.52       1.62       1.62         150       3.90       1.35       4.56       5.72       1.61       6.32       1.65       2.20       3.54       1.44       4.93       1.55       5.64       1.63       6.16       1.68       2.50       1.62       1.62 <td>32       5.12       3.47       1.43       5.02       3.43       1.48       4.88       3.37       1.55       4.65       3.26       1.60         32       5.23       3.65       1.44       5.14       3.61       1.48       <b>5.00 3.55</b>       1.55       4.77       3.45       1.60         33       5.58       3.52       1.45       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.35       1.6         34       5.81       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.6i         2°(°WB)      </td> <td>8.0       25       5.58       3.69       1.20       5.37       3.86       1.21       5.47       3.43       1.43       5.00       3.55       1.55       4.65       3.26       1.6         9.0       2.7       5.70       3.86       1.21       5.47       3.75       1.32       5.23       3.65       1.44       5.14       3.61       1.48       5.00       3.55       4.55       4.77       3.45       1.61         20       3.0       6.04       3.71       1.22       5.81       3.62       1.34       5.81       3.43       1.45       5.35       3.43       1.56       5.13       3.35       1.56       5.13       3.35       1.56       5.13       3.35       1.57       5.34       3.27       1.60         Note:       0udoor tempeature (°CM0)       6       10       10       1.50       5.58       3.35       1.57       5.34       3.27       1.60         Note:       0udoor tempeature (°CM0)       6       10       1.50       5.58       3.35       1.57       5.34       3.27       1.60         20.0       3.50       1.43       1.46       6.00       1.56       6.52       1.6</td> <td>18.0<br/>19.0<br/>22.0</td> <td>25<br/>27<br/>30</td> <td>5.58<br/>5.70</td> <td>3.69</td> <td></td> <td>0.1Z I</td> <td>2 42</td> <td>1 2 1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32       5.12       3.47       1.43       5.02       3.43       1.48       4.88       3.37       1.55       4.65       3.26       1.60         32       5.23       3.65       1.44       5.14       3.61       1.48 <b>5.00 3.55</b> 1.55       4.77       3.45       1.60         33       5.58       3.52       1.45       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.35       1.6         34       5.81       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.6i         2°(°WB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.0       25       5.58       3.69       1.20       5.37       3.86       1.21       5.47       3.43       1.43       5.00       3.55       1.55       4.65       3.26       1.6         9.0       2.7       5.70       3.86       1.21       5.47       3.75       1.32       5.23       3.65       1.44       5.14       3.61       1.48       5.00       3.55       4.55       4.77       3.45       1.61         20       3.0       6.04       3.71       1.22       5.81       3.62       1.34       5.81       3.43       1.45       5.35       3.43       1.56       5.13       3.35       1.56       5.13       3.35       1.56       5.13       3.35       1.57       5.34       3.27       1.60         Note:       0udoor tempeature (°CM0)       6       10       10       1.50       5.58       3.35       1.57       5.34       3.27       1.60         Note:       0udoor tempeature (°CM0)       6       10       1.50       5.58       3.35       1.57       5.34       3.27       1.60         20.0       3.50       1.43       1.46       6.00       1.56       6.52       1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.0<br>19.0<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25<br>27<br>30                            | 5.58<br>5.70                       | 3.69                                    |                                    | 0.1Z I                                         | 2 42                               | 1 2 1                                                          |                                   |                                    |                                    |                                         |          |                     |                      |                      |                      |                       |                     |                |     |
| 19.0       27       5.70       3.86       1.21       5.47       3.75       1.32       5.23       3.65       1.44       5.14       3.61       1.48       5.00       3.55       1.55       4.77       3.4         22.0       30       6.04       3.71       1.22       5.81       3.62       1.33       5.58       3.52       1.45       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.3         24.0       32       6.27       3.60       1.22       6.04       3.52       1.34       5.81       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.22         4eating       SUHz 220-240V       Arr       P       TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32       5.23       3.65       1.44       5.14       3.61       1.48       5.00       3.55       1.55       4.77       3.45       1.60         33       5.58       3.52       1.45       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.35       1.67         34       5.81       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.60         1       IC       PI       IC       PI       48       6.00       1.56       6.52       1.62       5.58       3.35       1.57       5.34       3.27       1.60         1       IC       PI       IC       PI       48       6.00       1.56       6.52       1.62       5.58       5.57       5.54       1.63       6.16       1.68       56       5.60       1.64       6.12       1.69       57       5.52       1.65       6.04       1.70         30051923A         WOTES         (m³/min)       1       Ratings shown are net capacities which include a deduction for indoor fan motor heat         (°C)       2       Sobood       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30       27       5.70       3.86       1.21       5.47       3.75       1.32       5.23       3.65       1.44       5.14       3.61       1.48       5.00       3.55       4.77       3.45       1.66         2.0       30       6.04       3.71       1.22       5.81       3.62       1.33       5.58       3.52       1.44       5.14       3.44       1.48       5.38       3.43       1.56       6.11       3.33       1.61         4.0       32       6.27       3.60       1.22       6.04       3.52       1.34       5.81       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.60         eating       50Hz 220-240V       AR       161       1.50       5.58       3.35       1.57       5.34       3.27       1.60         eating       50Hz 220-240V       AR       161       1.61       1.50       5.58       3.35       1.57       5.34       3.27       1.60         15.0       3.90       1.35       4.56       1.42       5.21       1.68       1.62       1.62       1.62       1.62       1.62       1.62       1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.0<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27<br>30                                  | 5.70                               |                                         | 1 20 1                             |                                                |                                    |                                                                |                                   |                                    |                                    |                                         |          |                     |                      |                      |                      |                       |                     |                |     |
| 22.0       30       6.04       3.71       1.22       5.81       3.62       1.33       5.58       3.52       1.45       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.3         24.0       32       6.27       3.60       1.22       6.04       3.52       1.34       5.81       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.2         teating       Othz 220-240V       Arr 161         bit of the colspan="5">teating       Othz 220-240V       Arr 161         teating       Othz 220-240V       Arr 161         Oth of the colspan="5">Oth of the colspan= 5       Oth of the co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AR       1.45       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.35       1.6         34       5.81       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.6i         2000       6       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <t< td=""><td>12.0       30       6.04       3.71       1.22       5.81       3.62       1.33       5.58       3.52       1.45       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.35       1.6         4.0       32       6.27       3.60       1.22       6.04       3.52       1.34       5.81       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.6         ating       Outdor temperature (°CWB)       6       10         idw       Outdor temperature (°CWB)       6         (°C)       C       P       TC       P       TC</td><td>22.0</td><td>30</td><td></td><td>3.86</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                      | 12.0       30       6.04       3.71       1.22       5.81       3.62       1.33       5.58       3.52       1.45       5.49       3.49       1.49       5.35       3.43       1.56       5.11       3.35       1.6         4.0       32       6.27       3.60       1.22       6.04       3.52       1.34       5.81       3.43       1.45       5.72       3.40       1.50       5.58       3.35       1.57       5.34       3.27       1.6         ating       Outdor temperature (°CWB)       6       10         idw       Outdor temperature (°CWB)       6         (°C)       C       P       TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                        |                                    | 3.86                                    |                                    |                                                |                                    |                                                                |                                   |                                    |                                    |                                         |          |                     |                      |                      |                      |                       |                     |                |     |
| Heating         50Hz 220-240V         AR         161           Indox         Outdoor temperature (°CWB)         0         0         0         0           150         -10         -5         0         6         10         0           (°Q         TC         PI         TC         PI         TC         PI         TC         PI           15.0         3.90         1.35         4.56         1.42         5.21         1.48         6.00         1.56         6.52         1.65           20.0         3.70         1.39         4.36         1.46         5.72         1.61         6.24         1.67           22.0         3.62         1.40         4.28         1.57         5.52         1.65         6.04         1.70           24.0         3.54         1.42         4.20         1.48         4.85         1.55         5.64         1.63         6.04         1.70           3D051923A         NOTES           VFR:         Air flow rate         (°C)         2         shows nominal (rated) capacities and powe indow fam motor heat         indoor fam motor heat           WB:         Entering dry bulb temp.         (°C)         2         shows nominal (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AR         16.1           i         TC         P           i         TC         P           iiii         TC         P           iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sating         50Hz 220-240V         AR         16.1           bit         Outdoor temperature (°CWB)         0         0           DB         -10         -5         0         6         10           (°C)         TC         P         TC         P         TC         P           15.0         3.90         1.35         4.56         1.42         5.21         1.48         6.00         1.56         6.32         1.65           22.0         3.62         1.40         4.28         1.47         4.93         1.54         5.72         1.61         6.24         1.67           24.0         3.54         1.42         4.20         1.48         4.85         1.55         5.64         1.63         6.16         1.68           25.0         3.50         1.43         4.16         1.49         4.81         1.56         5.60         1.64         6.12         1.68           27.0         3.42         1.44         4.08         1.51         4.73         1.57         5.52         1.65         6.04         1.70           Jobit satistics and power input           B:         Entering dry bulb temp.         (°C)         2         Sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32                                        |                                    | 3.71                                    | 1.22                               | 5.81                                           | 3.62                               |                                                                |                                   | 3.52                               |                                    | 5.49                                    | 3.49     | 1.49                | 5.35                 | 3.43                 |                      |                       |                     |                |     |
| Nor         Outdor temperature (°CWB)           DB8         -10         -5         0         6         10           (°C)         TC         PI         TC         PI         TC         PI           15.0         3.90         1.35         4.56         1.42         5.21         1.48         6.00         1.56         6.52         1.62           20.0         3.70         1.39         4.36         1.46         5.01         1.52         5.00         1.00         6.32         1.65           22.0         3.62         1.40         4.28         1.47         4.93         1.54         5.72         1.61         6.24         1.67           24.0         3.54         1.42         4.20         1.48         4.85         1.55         5.64         1.63         6.16         1.68           25.0         3.50         1.43         4.16         1.49         4.81         1.55         5.64         1.63         6.16         1.69           27.0         3.42         1.44         4.08         1.51         4.73         1.57         5.52         1.65         6.04         1.70           SYMBOLS <td rowsp<="" td=""><td>(°CWB)       6       10         1       TC       P       TC         18       6.00       1.56       6.52       1.62         52       5.00       1.60       6.32       1.65         54       5.72       1.61       6.24       1.67         55       5.64       1.63       6.16       1.68         56       5.60       1.64       6.12       1.69         57       5.52       1.65       6.04       1.70         3D051923A         MOTES         (m³/min)       1       Ratings shown are net capacities which include a deduction for indoor fan motor heat         (°C)       2      </td><td>Indur         Outdoor temperature (°CWB)           EDB         -10         -5         0         6         10           (°C)         TC         PI         TC         PI         TC         PI           15.0         3.90         1.35         4.56         1.42         5.21         1.48         6.00         1.56         6.52         1.62           20.0         3.70         1.33         4.36         1.46         5.01         1.56         6.32         1.65           22.0         3.62         1.40         4.28         1.47         4.93         1.54         5.72         1.61         6.32         1.65           24.0         3.54         1.42         4.20         1.48         4.81         1.56         5.60         1.64         6.12         1.69           27.0         3.42         1.44         4.08         1.51         4.73         1.57         5.52         1.65         6.04         1.70           3D051923A   SYMBOLS R: Air flow rate (°C) 2 Entering we bulb temp. (°C) 2 (°C) 2 Sensible heating capacity (kW) 3 TC, P1 and SHC must be calculated by interpolation using the figure in the above tables. (Figures out of the tables should not be used calcul</td><td></td><td></td><td>6.27</td><td>3.60</td><td>1.22</td><td>6.04</td><td>3.52</td><td>1.34</td><td>5.81</td><td>3.43</td><td>1.45</td><td>5.72</td><td>3.40</td><td>1.50</td><td>5.58</td><td>3.35</td><td>1.57</td><td>5.34</td><td>3.27</td><td>1.6</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <td>(°CWB)       6       10         1       TC       P       TC         18       6.00       1.56       6.52       1.62         52       5.00       1.60       6.32       1.65         54       5.72       1.61       6.24       1.67         55       5.64       1.63       6.16       1.68         56       5.60       1.64       6.12       1.69         57       5.52       1.65       6.04       1.70         3D051923A         MOTES         (m³/min)       1       Ratings shown are net capacities which include a deduction for indoor fan motor heat         (°C)       2      </td> <td>Indur         Outdoor temperature (°CWB)           EDB         -10         -5         0         6         10           (°C)         TC         PI         TC         PI         TC         PI           15.0         3.90         1.35         4.56         1.42         5.21         1.48         6.00         1.56         6.52         1.62           20.0         3.70         1.33         4.36         1.46         5.01         1.56         6.32         1.65           22.0         3.62         1.40         4.28         1.47         4.93         1.54         5.72         1.61         6.32         1.65           24.0         3.54         1.42         4.20         1.48         4.81         1.56         5.60         1.64         6.12         1.69           27.0         3.42         1.44         4.08         1.51         4.73         1.57         5.52         1.65         6.04         1.70           3D051923A   SYMBOLS R: Air flow rate (°C) 2 Entering we bulb temp. (°C) 2 (°C) 2 Sensible heating capacity (kW) 3 TC, P1 and SHC must be calculated by interpolation using the figure in the above tables. (Figures out of the tables should not be used calcul</td> <td></td> <td></td> <td>6.27</td> <td>3.60</td> <td>1.22</td> <td>6.04</td> <td>3.52</td> <td>1.34</td> <td>5.81</td> <td>3.43</td> <td>1.45</td> <td>5.72</td> <td>3.40</td> <td>1.50</td> <td>5.58</td> <td>3.35</td> <td>1.57</td> <td>5.34</td> <td>3.27</td> <td>1.6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                     | (°CWB)       6       10         1       TC       P       TC         18       6.00       1.56       6.52       1.62         52       5.00       1.60       6.32       1.65         54       5.72       1.61       6.24       1.67         55       5.64       1.63       6.16       1.68         56       5.60       1.64       6.12       1.69         57       5.52       1.65       6.04       1.70         3D051923A         MOTES         (m³/min)       1       Ratings shown are net capacities which include a deduction for indoor fan motor heat         (°C)       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indur         Outdoor temperature (°CWB)           EDB         -10         -5         0         6         10           (°C)         TC         PI         TC         PI         TC         PI           15.0         3.90         1.35         4.56         1.42         5.21         1.48         6.00         1.56         6.52         1.62           20.0         3.70         1.33         4.36         1.46         5.01         1.56         6.32         1.65           22.0         3.62         1.40         4.28         1.47         4.93         1.54         5.72         1.61         6.32         1.65           24.0         3.54         1.42         4.20         1.48         4.81         1.56         5.60         1.64         6.12         1.69           27.0         3.42         1.44         4.08         1.51         4.73         1.57         5.52         1.65         6.04         1.70           3D051923A   SYMBOLS R: Air flow rate (°C) 2 Entering we bulb temp. (°C) 2 (°C) 2 Sensible heating capacity (kW) 3 TC, P1 and SHC must be calculated by interpolation using the figure in the above tables. (Figures out of the tables should not be used calcul |                                           |                                    | 6.27                                    | 3.60                               | 1.22                                           | 6.04                               | 3.52                                                           | 1.34                              | 5.81                               | 3.43                               | 1.45                                    | 5.72     | 3.40                | 1.50                 | 5.58                 | 3.35                 | 1.57                  | 5.34                | 3.27           | 1.6 |
| 27.0       3.42       1.44       4.08       1.51       4.73       1.57       5.52       1.65       6.04       1.70         3D051923A         SYMBOLS         VF:       Bypass factor       NOTES         WB:       Entering wet bulb temp.       (°C)       2       indoor fan motor heat         WB:       Entering dry bulb temp.       (°C)       2       shows nominal (rated) capacities and powe         C:       Total capacity       (kW)       3       TC, PI and SHC must be calculated by interpolation using in the above tables. (Figures out of the tables should not calculation.)         HC:       Sensible heating capacity       (kW)       4       About SHC which are not mentioned on the table, please them with around values in direct proportion.         5       Capacities are based on following conditions: Corresponding refrigerant piping length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57       5.52       1.65       6.04       1.70         3D051923A         MOTES         (m <sup>3</sup> /min)       1       Ratings shown are net capacities which include a deduction for indoor fan motor heat         (°C)       2       shows nominal (rated) capacities and power input.         (°C)       3       TC, PI and SHC must be calculated by interpolation using the figu in the above tables. (Figures out of the tables should not be used calculation.)         4       About SHC which are not mentioned on the table, please calculat them with around values in direct proportion.         5       Capacities are based on following conditions: Corresponding refrigerant piping length:       7.5 m Level difference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.0       3.42       1.44       4.08       1.51       4.73       1.57       5.52       1.65       6.04       1.70         JBUD51923A         SYMBOLS         R:       Air flow rate       (m <sup>3</sup> /min)       1       Ratings shown are net capacities which include a deduction for indoor fan motor heat         By pass factor       (°C)       2       shows nominal (rated) capacities and power input.         B:       Entering dry bulb temp.       (°C)       2       shows nominal (rated) capacities and power input.         C:       Sensible heating capacity       (kW)       3       TC, PI and SHC must be calculated by interpolation using the figu in the above tables. (Figures out of the tables should not be used calculation.)         4       About SHC which are not mentioned on the table, please calculat them with around values in direct proportion.         5       Capacities are based on following conditions: Corresponding refrigerant piping length:       7.5 m Level difference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Indoo<br>EDB<br>(°C)<br>15.(<br>20.0<br>22.0<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r<br>3<br>0<br>0<br>0<br>0<br>0           | TC<br>3.90<br>3.70<br>3.62<br>3.54 | 0<br>Pl<br>1.35<br>1.39<br>1.40<br>1.42 | ۲۲<br>4.56<br>4.36<br>4.28<br>4.20 | Out<br>5<br>Pl<br>1.42<br>1.46<br>1.47<br>1.48 | TC<br>5.21<br>5.01<br>4.93<br>4.85 | PI<br><b>1.48</b><br><b>1.52</b><br><b>1.54</b><br><b>1.55</b> | VB)<br>TC<br>6.00<br>5.72<br>5.64 | Pl<br>1.56<br>1.60<br>1.61<br>1.63 | TC<br>6.52<br>6.32<br>6.24<br>6.16 | 0<br>Pl<br>1.62<br>1.65<br>1.67<br>1.68 |          |                     |                      |                      |                      |                       |                     |                |     |
| SYMBOLS       NOTES         AFR:       Air flow rate       (m <sup>3</sup> /min)       1       Ratings shown are net capacities which include a deduct indoor fan motor heat         BF:       Bypass factor       (°C)       2       shows nominal (rated) capacities and power         EDB:       Entering dry bulb temp.       (°C)       2       shows nominal (rated) capacities and power         TC:       Total capacity       (kW)       3       TC, PI and SHC must be calculated by interpolation using in the above tables. (Figures out of the tables should not calculation.)         SHC:       Sensible heating capacity       (kW)       4       About SHC which are not mentioned on the table, please them with around values in direct proportion.         PI:       Power input       5       Capacities are based on following conditions: Corresponding refrigerant piping length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image: Motel state stat                                                                                                                                                                                                                                                                                                                                                                                                                              | SYMBOLS       NOTES         R: Air flow rate       (m <sup>3</sup> /min)       1       Ratings shown are net capacities which include a deduction for indoor fan motor heat         Bypass factor       (°C)       2       shows nominal (rated) capacities and power input.         B: Entering dry bulb temp.       (°C)       2       shows nominal (rated) capacities and power input.         C: Sensible heating capacity       (kW)       3       TC, PI and SHC must be calculated by interpolation using the figu in the above tables. (Figures out of the tables should not be used calculation.)         Power input       (kW)       4       About SHC which are not mentioned on the table, please calculat them with around values in direct proportion.         5       Capacities are based on following conditions: Corresponding refrigerant piping length:       7.5 m Level difference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                    |                                         |                                    |                                                |                                    |                                                                |                                   |                                    |                                    |                                         |          |                     |                      |                      |                      |                       |                     |                |     |
| AFR:       Air flow rate       (m <sup>3</sup> /min)       1       Ratings shown are net capacities which include a deduct indoor fan motor heat         VB:       Entering wet bulb temp.       (°C)       2       shows nominal (rated) capacities and powe         CD:       Total capacity       (kW)       3       TC, PI and SHC must be calculated by interpolation using in the above tables. (Figures out of the tables should not calculation.)         VB:       Power input       (kW)       4       About SHC which are not mentioned on the table, please them with around values in direct proportion.         5       Capacities are based on following conditions: Corresponding refrigerant piping length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (m <sup>3</sup> /min)       1       Ratings shown are net capacities which include a deduction for indoor fan motor heat         (°C)       2       shows nominal (rated) capacities and power input.         (°C)       3       TC, PI and SHC must be calculated by interpolation using the figu in the above tables. (Figures out of the tables should not be used calculation.)         4       About SHC which are not mentioned on the table, please calculated them with around values in direct proportion.         5       Capacities are based on following conditions: Corresponding refrigerant piping length:       7.5 m Level difference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R:       Air flow rate       (m <sup>3</sup> /min)       1       Ratings shown are net capacities which include a deduction for indoor fan motor heat         B:       Entering wet bulb temp.       (°C)       2       shows nominal (rated) capacities and power input.         B:       Entering dry bulb temp.       (°C)       2       shows nominal (rated) capacities and power input.         C:       Sensible heating capacity       (kW)       3       TC, PI and SHC must be calculated by interpolation using the figu in the above tables. (Figures out of the tables should not be used calculation.)         Power input       (kW)       4       About SHC which are not mentioned on the table, please calculated them with around values in direct proportion.         5       Capacities are based on following conditions: Corresponding refrigerant piping length:       7.5 m Level difference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                                    | _                                       | _                                  |                                                |                                    |                                                                | _                                 |                                    | 3D                                 | 051923A                                 | <b>\</b> |                     |                      |                      |                      |                       |                     |                |     |
| AFR:       Air flow rate       (m <sup>3</sup> /min)       1       Ratings shown are net capacities which include a deduct indoor fan motor heat         VB:       Entering wet bulb temp.       (°C)       2       shows nominal (rated) capacities and powe         CD:       Total capacity       (kW)       3       TC, PI and SHC must be calculated by interpolation using in the above tables. (Figures out of the tables should not calculation.)         VB:       Power input       (kW)       4       About SHC which are not mentioned on the table, please them with around values in direct proportion.         5       Capacities are based on following conditions: Corresponding refrigerant piping length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (m <sup>3</sup> /min)       1       Ratings shown are net capacities which include a deduction for indoor fan motor heat         (°C)       2       shows nominal (rated) capacities and power input.         (°C)       3       TC, PI and SHC must be calculated by interpolation using the figure in the above tables. (Figures out of the tables should not be used calculation.)         4       About SHC which are not mentioned on the table, please calculated them with around values in direct proportion.         5       Capacities are based on following conditions: Corresponding refrigerant piping length:       7.5 m Level difference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R:       Air flow rate       (m <sup>3</sup> /min)       1       Ratings shown are net capacities which include a deduction for indoor fan motor heat         B:       Entering wet bulb temp.       (°C)       2       shows nominal (rated) capacities and power input.         B:       Entering dry bulb temp.       (°C)       2       shows nominal (rated) capacities and power input.         C:       Sensible heating capacity       (kW)       3       TC, PI and SHC must be calculated by interpolation using the figure in the above tables. (Figures out of the tables should not be used calculation.)         Power input       (kW)       4       About SHC which are not mentioned on the table, please calculate them with around values in direct proportion.         5       Capacities are based on following conditions: Corresponding refrigerant piping length:       7.5 m Level difference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SYN                                       |                                    |                                         |                                    |                                                |                                    |                                                                |                                   |                                    |                                    | NOT                                     | ES       |                     |                      |                      |                      |                       |                     |                |     |
| IF:       Bypass factor       indoor fan motor heat         WB:       Entering wet bulb temp.       (°C)       2         DB:       Entering dry bulb temp.       (°C)       2         C:       Total capacity       (kW)       3       TC, PI and SHC must be calculated by interpolation using in the above tables. (Figures out of the tables should not calculation.)         HC:       Sensible heating capacity       (kW)       4       About SHC which are not mentioned on the table, please them with around values in direct proportion.         1:       Power input       5       Capacities are based on following conditions: Corresponding refrigerant piping length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (°C)       2       indoor fan motor heat         (°C)       2       shows nominal (rated) capacities and power input.         (kW)       3       TC, PI and SHC must be calculated by interpolation using the figuin the above tables. (Figures out of the tables should not be used calculation.)         4       About SHC which are not mentioned on the table, please calculated them with around values in direct proportion.         5       Capacities are based on following conditions:<br>Corresponding refrigerant piping length:       7.5 m<br>0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Bypass factor</li> <li>Bypass factor</li> <li>Bypass factor</li> <li>Indoor fan motor heat</li> <li>indoor fan motor heat</li> <li>shows nominal (rated) capacities and power input.</li> <li>Total capacity</li> <li>Total capacity</li> <li>C Sensible heating capacity</li> <li>Power input</li> <li>(W)</li> <li>4 About SHC which are not mentioned on the table, please calculated by interpolation.</li> <li>C Capacities are based on following conditions:<br/>Corresponding refrigerant piping length:</li> <li>T.S m<br/>Level difference:</li> <li>C Sensible heating capacity</li> <li>(W)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                    | •                                       |                                    |                                                |                                    | (r                                                             | n <sup>3</sup> /min)              | 1                                  |                                    |                                         |          | n are n             | et canac             | ities wh             | ich incli            | ide a de              | duction             | for            |     |
| EDB:       Entering dry bulb temp.       (°C)       2       Intering dry bulb temp.       (acc) dry bulb temp.         C:       Total capacity       (kW)       3       TC, PI and SHC must be calculated by interpolation using in the above tables. (Figures out of the tables should not calculation.)         Y:       Power input       (kW)       4       About SHC which are not mentioned on the table, please them with around values in direct proportion.         5       Capacities are based on following conditions: Corresponding refrigerant piping length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (eC)       2       Image: Stress informinal (rated) capacities and power input: 1         (kW)       3       TC, PI and SHC must be calculated by interpolation using the figu in the above tables. (Figures out of the tables should not be used calculation.)         4       About SHC which are not mentioned on the table, please calculation.)         5       Capacities are based on following conditions: Corresponding refrigerant piping length: 7.5 m Level difference: 0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B:       Entering dry bulb temp.       (°C)       2       Instrument (dee) (dependent of the power input of the figure of the figur | F: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bypass                                    | factor                             |                                         |                                    |                                                |                                    |                                                                |                                   |                                    |                                    |                                         | or fan m | otor he             | at                   |                      |                      |                       |                     |                |     |
| C:       Total capacity       (kW)       3       TC, PI and SHC must be calculated by interpolation using in the above tables. (Figures out of the tables should not calculation.)         HC:       Sensible heating capacity       (kW)       in the above tables. (Figures out of the tables should not calculation.)         P:       Power input       (kW)       4       About SHC which are not mentioned on the table, please them with around values in direct proportion.         5       Capacities are based on following conditions: Corresponding refrigerant piping length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (kW)       3       TC, Pl and SHC must be calculated by interpolation using the figure in the above tables. (Figures out of the tables should not be used calculation.)         4       About SHC which are not mentioned on the table, please calculation.         5       Capacities are based on following conditions:<br>Corresponding refrigerant piping length:       7.5 m<br>0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Total capacity (kW) 3</li> <li>Sensible heating capacity (kW) Power input (kW)</li> <li>Sensible heating capacity (kW)</li> <li>Power input (kW)</li> <li>About SHC which are not mentioned on the table, please calculation.)</li> <li>About SHC which are not mentioned on the table, please calculated them with around values in direct proportion.</li> <li>Capacities are based on following conditions:<br/>Corresponding refrigerant piping length: 7.5 m<br/>Level difference: 0 m</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DB: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Entering                                  | g dry bu                           | uio iemp<br>ilb temp                    | J.<br>I.                           |                                                |                                    |                                                                |                                   |                                    |                                    |                                         |          |                     |                      |                      |                      |                       |                     |                |     |
| <ul> <li>4 About SHC which are not mentioned on the table, please them with around values in direct proportion.</li> <li>5 Capacities are based on following conditions:<br/>Corresponding refrigerant piping length:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>About SHC which are not mentioned on the table, please calculation them with around values in direct proportion.</li> <li>Capacities are based on following conditions:<br/>Corresponding refrigerant piping length: 7.5 m<br/>Level difference: 0 m</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4       About SHC which are not mentioned on the table, please calculation them with around values in direct proportion.         5       Capacities are based on following conditions:<br>Corresponding refrigerant piping length:       7.5 m         Level difference:       0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sensible                                  | heatin                             | g capac                                 | ity                                |                                                |                                    | (k                                                             | W)                                | 3                                  |                                    | in the                                  | above    | c must<br>tables. ( | be calcu<br>Figures  | uated b<br>out of th | y interp<br>ne table | olation i<br>s should | ising the<br>not be | e tigu<br>usec |     |
| Corresponding refrigerant piping length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Corresponding refrigerant piping length: 7.5 m<br>Level difference: 0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Corresponding refrigerant piping length: 7.5 m<br>Level difference: 0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | 1                                  |                                         |                                    |                                                |                                    | (1                                                             | ,                                 |                                    |                                    | them                                    | with ar  | ound va             | alues in o           | direct pr            | oportio              | า.                    | lease ca            | alcula         |     |
| Level unreferice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                    |                                         |                                    |                                                |                                    |                                                                |                                   | 5                                  |                                    | Corre                                   | spondir  | ig refrig           | on follo<br>erant pi | wing co<br>bing len  | ondition<br>gth:     | S:                    |                     |                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                    |                                         |                                    |                                                |                                    |                                                                |                                   | 6                                  |                                    |                                         |          |                     | nd Bypa              | ss facto             | r (BF) ar            | e tabura              |                     |                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                    |                                         |                                    |                                                |                                    |                                                                |                                   | -                                  |                                    |                                         |          |                     |                      |                      | (, ,                 |                       |                     |                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                    |                                         |                                    |                                                |                                    |                                                                |                                   |                                    |                                    |                                         |          |                     |                      |                      |                      |                       |                     |                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                    |                                         |                                    |                                                |                                    |                                                                |                                   |                                    |                                    |                                         |          |                     |                      |                      |                      |                       |                     |                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                    |                                         |                                    |                                                |                                    |                                                                |                                   |                                    |                                    |                                         |          |                     |                      |                      |                      |                       |                     |                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                    |                                         |                                    |                                                |                                    |                                                                |                                   |                                    |                                    |                                         |          |                     |                      |                      |                      |                       |                     |                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                    |                                         |                                    |                                                |                                    |                                                                |                                   |                                    |                                    |                                         |          |                     |                      |                      |                      |                       |                     |                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                    |                                         |                                    |                                                |                                    |                                                                |                                   |                                    |                                    |                                         |          |                     |                      |                      |                      |                       |                     |                |     |

#### 4 - 1 Cooling/Heating capacity tables

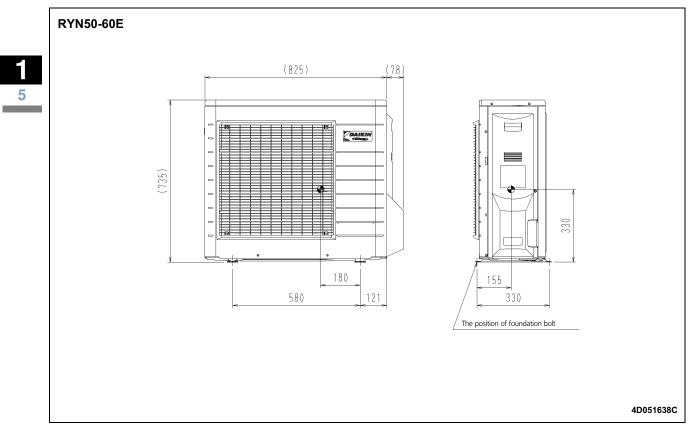
#### FTYN60FV1B+RYN60E3V1B

| FTYN6           |            | IDT      | N I NOU             | E3V I B      |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       | AFR                 |              | 1            | 6.2       |
|-----------------|------------|----------|---------------------|--------------|--------------|--------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-----------------|---------------------|-----------|------------------|-----------------------|---------------------|--------------|--------------|-----------|
| Coolin          | -          |          |                     |              |              |              |              |              | 5                                                                                                                                                                                                                             |              | 20-240\      |                 |                     |           |                  |                       | BF                  |              | C            | .29       |
| EWB             | door<br>ED | R        |                     | 20           |              |              | 25           |              |                                                                                                                                                                                                                               | <u> </u>     | tdoor temp   | erature (°CI    | <u>DB)</u><br>32    |           |                  | 35                    |                     |              | 40           |           |
| (°C)            | (°(        |          | TC                  | SHC          | PI           | TC           | SHC          | PI           | TC                                                                                                                                                                                                                            | SHC          | PI           | TC              | SHC                 | PI        | TC               | SHC                   | PI                  | TC           | SHC          | PI        |
| 14.0            | 2          | 0        | 5.60                | 3.94         | 1.49         | 5.60         | 3.94         | 1.66         | 5.59                                                                                                                                                                                                                          | 3.94         | 1.82         | 5.48            | 3.88                | 1.88      | 5.31             | 3.79                  | 1.97                | 5.03         | 3.64         | 2.12      |
| 16.0            | 2          |          | 6.42                | 4.17         | 1.54         | 6.14         | 4.02         | 1.68         | 5.86                                                                                                                                                                                                                          | 3.88         | 1.83         | 5.75            |                     | 1.89      | 5.59             | 3.74                  | 1.98                | 5.31         | 3.60         | 2.12      |
| 18.0            | 2          |          | 6.70                | 4.31         | 1.54         | 6.42         | 4.17         | 1.69         | 6.14                                                                                                                                                                                                                          | 4.04         | 1.84         | 6.03            | 3.99                | 1.90      | 5.86             | 3.91                  | 1.99                | 5.58         | 3.78         | 2.13      |
| 19.0<br>22.0    | 2          |          | 6.84<br>7.25        | 4.49         | 1.55<br>1.56 | 6.56<br>6.97 | 4.36<br>4.19 | 1.70         | 6.28<br>6.69                                                                                                                                                                                                                  | 4.23<br>4.08 | 1.84         | 6.17<br>6.58    | 4.18                | 1.90      | <b>6.00</b> 6.41 | <b>4.10</b><br>3.97   | <b>1.99</b><br>2.00 | 5.72<br>6.14 | 3.98<br>3.86 | 2.14      |
| 24.0            | 3          |          | 7.53                | 4.18         | 1.57         | 7.25         | 4.07         | 1.72         | 6.97                                                                                                                                                                                                                          | 3.97         | 1.86         | 6.86            | 3.93                | 1.92      | 6.69             | 3.87                  | 2.00                | 6.41         | 3.77         | 2.16      |
| leatin          | <b>ig</b>  |          |                     | 50           | 0Hz 220      |              | tdoor temp   | erature (°C  | AFR<br>WB)                                                                                                                                                                                                                    |              | 1            | 7.4             | ]                   |           |                  |                       |                     |              |              |           |
| E               | DB         |          |                     | 10           |              | 5            |              | 0            |                                                                                                                                                                                                                               | 6            |              | 0               |                     |           |                  |                       |                     |              |              |           |
|                 | °C)        |          | TC                  | PI           | TC           | PI           | TC           | PI           | TC                                                                                                                                                                                                                            | PI           | TC           | PI              | 1                   |           |                  |                       |                     |              |              |           |
|                 | 5.0<br>).0 |          | 4.71<br>4.47        | 1.73<br>1.77 | 5.50<br>5.26 | 1.81<br>1.86 | 6.29<br>6.05 | 1.89<br>1.94 | 7.24<br>7.00                                                                                                                                                                                                                  | 1.99         | 7.87<br>7.63 | 2.06            | ł                   |           |                  |                       |                     |              |              |           |
|                 | 2.0        | $\dashv$ | 4.47                | 1.79         | 5.16         | 1.80         | 5.95         | 1.94         | 6.90                                                                                                                                                                                                                          | 2.06         | 7.54         | 2.13            |                     |           |                  |                       |                     |              |              |           |
|                 | 4.0        |          | 4.28                | 1.81         | 5.07         | 1.89         | 5.86         | 1.98         | 6.81                                                                                                                                                                                                                          | 2.08         | 7.44         | 2.14            |                     |           |                  |                       |                     |              |              |           |
|                 | 5.0        |          | 4.23                | 1.82         | 5.02         | 1.90         | 5.81         | 1.99         | 6.76                                                                                                                                                                                                                          | 2.09         | 7.39         | 2.15            |                     |           |                  |                       |                     |              |              |           |
| 27              | 7.0        |          | 4.13                | 1.84         | 4.92         | 1.92         | 5.71         | 2.00         | 6.66                                                                                                                                                                                                                          | 2.10         | 7.29         | 2.17            | J                   |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              | 3D           | 051924/         | 4                   |           |                  |                       |                     |              |              |           |
|                 |            |          | ABOLS               | 5            |              |              |              |              |                                                                                                                                                                                                                               |              |              | NOT             |                     |           |                  |                       |                     |              |              |           |
| vFR:<br>F:      |            |          | / rate<br>factor    |              |              |              |              | ()           | m³/min)                                                                                                                                                                                                                       | 1            |              |                 | gs shov<br>or fan m |           |                  | cities wh             | ich inclu           | ude a de     | eductior     | for       |
| WB:             | Ent        | ering    | g wet b             | ulb tem      |              |              |              |              | °C)                                                                                                                                                                                                                           | 2            | ,            |                 |                     |           |                  | l (rated)             | capaciti            | es and r     | ower ir      | nout      |
| DB:<br>C:       |            |          | g dry bu<br>apacity | ulb temp     | ).           |              |              |              | °C)<br><w)< td=""><td>3</td><td></td><td>TC. P</td><td></td><td></td><td></td><td>ulated b</td><td></td><td></td><td></td><td></td></w)<>                                                                                     | 3            |              | TC. P           |                     |           |                  | ulated b              |                     |              |              |           |
| C:<br>HC:<br>I: | Ser        | sible    |                     | ig capac     | city         |              |              | (I           | <w)<br><w)< td=""><td></td><td></td><td>in the<br/>calcu</td><td>e above<br/>lation.)</td><td>tables.</td><td>(Figures</td><td>out of t</td><td>ne table</td><td>s should</td><td>d not be</td><td>used fo</td></w)<></w)<br> |              |              | in the<br>calcu | e above<br>lation.) | tables.   | (Figures         | out of t              | ne table            | s should     | d not be     | used fo   |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               | 4            |              | them            | n with ar           | round v   | alues in         | entione<br>direct pr  | oportio             | n.           | olease c     | alculate  |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               | 5            | )            | Corre           | espondir<br>differe | ng refric | gerant p         | owing co<br>iping len | gth:                | S:           |              | .5 m<br>m |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               | 6            | 5            | Air fl          | ow rate             | (AFR) a   | nd Bypa          | ass facto             | r (BF) ar           | e tabura     | ited abo     | ove.      |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |
|                 |            |          |                     |              |              |              |              |              |                                                                                                                                                                                                                               |              |              |                 |                     |           |                  |                       |                     |              |              |           |

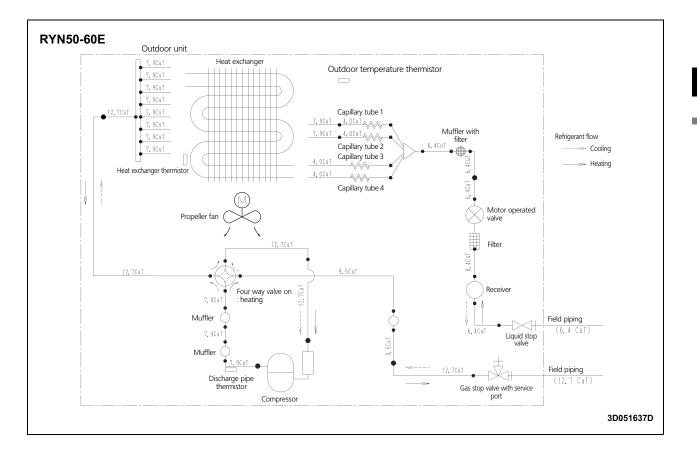

#### 4 - 1 Cooling/Heating capacity tables

| FTYN | 160F+R` | YN60E |
|------|---------|-------|

| eating<br>indor<br>indor<br>if.0 20<br>if.0 20<br>if.0 22<br>if.0 27<br>if.0 27<br>if.0 27<br>if.0 30<br>if.0 32<br>if.0 32 | ΤC         5.60         6.42         6.70         6.84         7.25         7.53                          | 0<br>Pl<br>1.73<br>1.77<br>1.79                                                              | Р<br>1.49<br>1.54<br>1.55<br>1.56<br>1.57<br>Hz 220<br>Hz 220<br>ГС<br>5.50<br>5.26 | Out                                                  |                                                                   | Pl<br>1.66<br>1.68<br>1.69<br>1.70<br>1.71<br>1.72<br>erature (°CV<br>0<br>Pl | TC<br>5.59<br>5.86<br>6.14<br>6.28<br>6.69<br>6.97                                                                                                                                                                                                                                                                   | 30<br>SHC<br>3.94<br>3.88<br>4.04<br>4.23<br>4.08<br>3.97 | Pl<br>1.82<br>1.83<br>1.84<br>1.84<br>1.86<br>1.86 | rature (°CI<br>TC<br>5.48<br>5.75<br>6.03<br>6.17<br>6.58<br>6.86 | B)<br>32<br>SHC<br><b>3.88</b><br><b>3.82</b><br><b>3.99</b><br><b>4.18</b><br><b>4.04</b><br><b>3.93</b> | Pl<br>1.88<br>1.89<br>1.90<br>1.90<br>1.91<br>1.92 | тс<br>5.31<br>5.59<br>5.86<br>6.00<br>6.41<br>6.69 | 3.74<br>3.91<br><b>4.10</b><br>3.97         | AFR<br>BF<br>1.97<br>1.98<br>1.99<br>2.00<br>2.01 | TC<br>5.03<br>5.31<br>5.58<br>5.72<br>6.14<br>6.41 |                                                                                      | 2.1<br>2.1                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------|---------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------|
| EWB         EDB           (°C)         (°C)           14.0         20           16.0         22           18.0         25           19.0         27           22.0         30           24.0         32           Indoor         EDB           (°C)         15.0           20.0         22.0           24.0         22.0           25.0         25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.60<br>6.42<br>6.70<br>6.84<br>7.25<br>7.53<br>7.53                                                      | SHC<br>3.94<br>4.17<br>4.31<br>4.49<br>4.31<br>4.18<br>50<br>0<br>Pl<br>1.73<br>1.77<br>1.79 | 1.49<br>1.54<br>1.54<br>1.55<br>1.56<br>1.57<br>Hz 220                              | 5.60<br>6.14<br>6.42<br>6.56<br>6.97<br>7.25<br>7.25 | SHC<br>3.94<br>4.02<br>4.17<br>4.36<br>4.19<br>4.07<br>door tempe | 1.66<br>1.68<br>1.69<br>1.70<br>1.71<br>1.72                                  | 5.59<br>5.86<br>6.14<br>6.28<br>6.69<br>6.97                                                                                                                                                                                                                                                                         | 30<br>SHC<br>3.94<br>3.88<br>4.04<br>4.23<br>4.08<br>3.97 | Pl<br>1.82<br>1.83<br>1.84<br>1.84<br>1.86<br>1.86 | TC<br>5.48<br>5.75<br>6.03<br>6.17<br>6.58<br>6.86                | 32<br>SHC<br><b>3.88</b><br><b>3.82</b><br><b>3.99</b><br><b>4.18</b><br><b>4.04</b>                      | 1.88<br>1.89<br>1.90<br>1.90<br>1.91               | 5.31<br>5.59<br>5.86<br>6.00<br>6.41               | SHC<br>3.79<br>3.74<br>3.91<br>4.10<br>3.97 | Pl<br>1.97<br>1.98<br>1.99<br>1.99<br>2.00        | 5.03<br>5.31<br>5.58<br>5.72<br>6.14               | 40<br>SHC<br><b>3.64</b><br><b>3.60</b><br><b>3.78</b><br><b>3.98</b><br><b>3.86</b> | Pl<br>2.12<br>2.12<br>2.13<br>2.14<br>2.14 |
| (°C)         (°C)           14.0         20           16.0         22           18.0         25           19.0         27           22.0         30           24.0         32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.60<br>6.42<br>6.70<br>6.84<br>7.25<br>7.53<br>7.53                                                      | SHC<br>3.94<br>4.17<br>4.31<br>4.49<br>4.31<br>4.18<br>50<br>0<br>Pl<br>1.73<br>1.77<br>1.79 | 1.49<br>1.54<br>1.54<br>1.55<br>1.56<br>1.57<br>Hz 220                              | 5.60<br>6.14<br>6.42<br>6.56<br>6.97<br>7.25<br>7.25 | SHC<br>3.94<br>4.02<br>4.17<br>4.36<br>4.19<br>4.07<br>door tempe | 1.66<br>1.68<br>1.69<br>1.70<br>1.71<br>1.72                                  | 5.59<br>5.86<br>6.14<br>6.28<br>6.69<br>6.97                                                                                                                                                                                                                                                                         | 30<br>SHC<br>3.94<br>3.88<br>4.04<br>4.23<br>4.08<br>3.97 | Pl<br>1.82<br>1.83<br>1.84<br>1.84<br>1.86<br>1.86 | TC<br>5.48<br>5.75<br>6.03<br>6.17<br>6.58<br>6.86                | 32<br>SHC<br><b>3.88</b><br><b>3.82</b><br><b>3.99</b><br><b>4.18</b><br><b>4.04</b>                      | 1.88<br>1.89<br>1.90<br>1.90<br>1.91               | 5.31<br>5.59<br>5.86<br>6.00<br>6.41               | SHC<br>3.79<br>3.74<br>3.91<br>4.10<br>3.97 | 1.97<br>1.98<br>1.99<br><b>1.99</b><br>2.00       | 5.03<br>5.31<br>5.58<br>5.72<br>6.14               | SHC<br>3.64<br>3.60<br>3.78<br>3.98<br>3.86                                          | 2.1<br>2.1<br>2.1<br>2.1<br>2.1            |
| 14.0         20           16.0         22           18.0         25           19.0         27           22.0         30           24.0         32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.60<br>6.42<br>6.70<br>6.84<br>7.25<br>7.53<br>7.53                                                      | 3.94<br>4.17<br>4.31<br>4.49<br>4.31<br>4.18<br>50<br>0<br>Pl<br>1.73<br>1.77<br>1.79        | 1.49<br>1.54<br>1.54<br>1.55<br>1.56<br>1.57<br>Hz 220                              | 5.60<br>6.14<br>6.42<br>6.56<br>6.97<br>7.25<br>7.25 | 3.94<br>4.02<br>4.17<br>4.36<br>4.19<br>4.07                      | 1.66<br>1.68<br>1.69<br>1.70<br>1.71<br>1.72                                  | 5.59<br>5.86<br>6.14<br>6.28<br>6.69<br>6.97                                                                                                                                                                                                                                                                         | 3.94<br>3.88<br>4.04<br>4.23<br>4.08<br>3.97              | 1.82<br>1.83<br>1.84<br>1.84<br>1.86<br>1.86       | 5.48<br>5.75<br>6.03<br>6.17<br>6.58<br>6.86                      | 3.88<br>3.82<br>3.99<br>4.18<br>4.04                                                                      | 1.88<br>1.89<br>1.90<br>1.90<br>1.91               | 5.31<br>5.59<br>5.86<br>6.00<br>6.41               | 3.79<br>3.74<br>3.91<br><b>4.10</b><br>3.97 | 1.97<br>1.98<br>1.99<br><b>1.99</b><br>2.00       | 5.03<br>5.31<br>5.58<br>5.72<br>6.14               | 3.64<br>3.60<br>3.78<br>3.98<br>3.86                                                 | 2.1<br>2.1<br>2.1<br>2.1<br>2.1            |
| 16.0         22           18.0         25           19.0         27           22.0         30           24.0         32   eating           Indoor         EDB           (°C)         15.0           20.0         22.0           20.0         22.0           25.0         25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.42<br>6.70<br>6.84<br>7.25<br>7.53<br>7.53<br>1.53<br>1.53<br>1.53<br>1.53<br>1.53<br>1.53<br>1.53<br>1 | 4.17<br>4.31<br>4.49<br>4.31<br>4.18<br>50<br>0<br>Pl<br>1.73<br>1.77<br>1.79                | 1.54<br>1.54<br>1.55<br>1.56<br>1.57<br>Hz 220                                      | 6.14<br>6.42<br>6.56<br>6.97<br>7.25                 | 4.02<br>4.17<br>4.36<br>4.19<br>4.07                              | 1.68<br>1.69<br>1.70<br>1.71<br>1.72                                          | 5.86<br>6.14<br>6.28<br>6.69<br>6.97                                                                                                                                                                                                                                                                                 | 3.88<br>4.04<br>4.23<br>4.08<br>3.97                      | 1.83<br>1.84<br>1.84<br>1.86<br>1.86               | 5.75<br>6.03<br>6.17<br>6.58<br>6.86                              | 3.82<br>3.99<br>4.18<br>4.04                                                                              | 1.89<br>1.90<br>1.90<br>1.91                       | 5.59<br>5.86<br>6.00<br>6.41                       | 3.74<br>3.91<br><b>4.10</b><br>3.97         | 1.98<br>1.99<br><b>1.99</b><br>2.00               | 5.31<br>5.58<br>5.72<br>6.14                       | 3.60<br>3.78<br>3.98<br>3.86                                                         | 2.12<br>2.12<br>2.14<br>2.14               |
| 18.0         25           19.0         27           22.0         30           24.0         32   eating           Indoor         EDB           (°C)         15.0           20.0         22.0           24.0         22.0           25.0         25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.70<br>6.84<br>7.25<br>7.53<br>7.53<br>1.53<br>1.53<br>1.53<br>1.53<br>1.53<br>1.53<br>1.53<br>1         | 4.31<br>4.49<br>4.31<br>4.18<br>50<br>0<br>Pl<br>1.73<br>1.77<br>1.79                        | 1.54<br>1.55<br>1.56<br>1.57<br>Hz 220                                              | 6.42<br>6.56<br>6.97<br>7.25                         | 4.17<br>4.36<br>4.19<br>4.07                                      | 1.69<br>1.70<br>1.71<br>1.72<br>erature (°CV                                  | 6.14<br>6.28<br>6.69<br>6.97                                                                                                                                                                                                                                                                                         | 4.04<br>4.23<br>4.08<br>3.97                              | 1.84<br>1.84<br>1.86<br>1.86                       | 6.03<br>6.17<br>6.58<br>6.86                                      | 3.99<br>4.18<br>4.04                                                                                      | 1.90<br>1.90<br>1.91                               | 5.86<br>6.00<br>6.41                               | 3.91<br><b>4.10</b><br>3.97                 | 1.99<br>1.99<br>2.00                              | 5.58<br>5.72<br>6.14                               | 3.78<br>3.98<br>3.86                                                                 | 2.1<br>2.1<br>2.1                          |
| 19.0         27           22.0         30           24.0         32           eating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.84<br>7.25<br>7.53<br>1.53<br>1.53<br>1.53<br>1.53<br>1.53<br>1.53<br>1.53<br>1                         | 4.49<br>4.31<br>4.18<br>50<br>0<br>Pl<br>1.73<br>1.77<br>1.79                                | 1.55<br>1.56<br>1.57<br>Hz 220<br>                                                  | 6.56<br>6.97<br>7.25<br>9-240V<br>Out<br>5<br>Pl     | 4.36<br>4.19<br>4.07                                              | 1.70<br>1.71<br>1.72<br>erature (°CV                                          | 6.28<br>6.69<br>6.97                                                                                                                                                                                                                                                                                                 | 4.23<br>4.08<br>3.97                                      | 1.84<br>1.86<br>1.86                               | 6.17<br>6.58<br>6.86                                              | 4.18<br>4.04                                                                                              | 1.90<br>1.91                                       | <b>6.00</b> 6.41                                   | <b>4.10</b><br>3.97                         | <b>1.99</b><br>2.00                               | 5.72<br>6.14                                       | 3.98<br>3.86                                                                         | 2.14<br>2.1                                |
| eating<br>Indoor<br>EDB<br>(°C)<br>15.0<br>20.0<br>22.0<br>24.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.53<br>-1<br>TC<br>4.71<br>4.47<br>4.37<br>4.28                                                          | 4.18<br>50<br>Pl<br>1.73<br>1.77<br>1.79                                                     | 1.57<br>Hz 220<br>TC<br>5.50                                                        | 7.25<br>-240V<br>0ut<br>5<br>Pl                      | 4.19<br>4.07                                                      | <b>1.72</b><br>erature (°C\<br>0                                              | 6.97<br>AFR<br>WB)                                                                                                                                                                                                                                                                                                   | 3.97                                                      | 1.86                                               | 6.86                                                              |                                                                                                           |                                                    |                                                    |                                             |                                                   |                                                    |                                                                                      |                                            |
| eating<br>EDB<br>(°C)<br>15.0<br>20.0<br>22.0<br>24.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1<br>TC<br>4.71<br>4.47<br>4.37<br>4.28                                                                  | 50<br>Pl<br>1.73<br>1.77<br>1.79                                                             | Hz 220                                                                              | 9- <b>240∨</b><br>Out<br>5<br>Pl                     | door tempe                                                        | erature (°CV                                                                  | AFR<br>WB)                                                                                                                                                                                                                                                                                                           |                                                           |                                                    | L                                                                 | 3.93                                                                                                      | 1.92                                               | 6.69                                               | 3.87                                        | 2.01                                              | 6.41                                               | 3.77                                                                                 | 2.10                                       |
| Indoor<br>EDB<br>(°C)<br>15.0<br>20.0<br>22.0<br>24.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TC<br>4.71<br>4.47<br>4.37<br>4.28                                                                        | 0<br>Pl<br>1.73<br>1.77<br>1.79                                                              | тс<br><b>5.50</b>                                                                   | Out<br>5 Pl                                          | (                                                                 | 0                                                                             | NB)                                                                                                                                                                                                                                                                                                                  |                                                           | 1                                                  | 7.4                                                               | ]                                                                                                         |                                                    |                                                    |                                             |                                                   |                                                    |                                                                                      |                                            |
| 22.0<br>24.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.37<br>4.28                                                                                              | 1.79                                                                                         | J.ZU                                                                                | 1.86                                                 | 6.29<br>6.05                                                      | 1.89<br>1.94                                                                  | TC<br>7.24<br>7.00                                                                                                                                                                                                                                                                                                   | 6<br>Pl<br><b>1.99</b>                                    | TC<br>7.87<br>7.63                                 | 0<br>Pl<br>2.06<br>2.11                                           |                                                                                                           |                                                    |                                                    |                                             |                                                   |                                                    |                                                                                      |                                            |
| 24.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.28                                                                                                      |                                                                                              | 5.16                                                                                | 1.80                                                 | 6.05<br>5.95                                                      | 1.94                                                                          | 6.90                                                                                                                                                                                                                                                                                                                 | 2.06                                                      | 7.54                                               | 2.11                                                              |                                                                                                           |                                                    |                                                    |                                             |                                                   |                                                    |                                                                                      |                                            |
| 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 1.81                                                                                         | 5.07                                                                                | 1.89                                                 | 5.86                                                              | 1.98                                                                          | 6.81                                                                                                                                                                                                                                                                                                                 | 2.00                                                      | 7.44                                               | 2.13                                                              |                                                                                                           |                                                    |                                                    |                                             |                                                   |                                                    |                                                                                      |                                            |
| 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 1.82                                                                                         | 5.02                                                                                | 1.90                                                 | 5.81                                                              | 1.99                                                                          | 6.76                                                                                                                                                                                                                                                                                                                 | 2.09                                                      | 7.39                                               | 2.15                                                              |                                                                                                           |                                                    |                                                    |                                             |                                                   |                                                    |                                                                                      |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.13                                                                                                      | 1.84                                                                                         | 4.92                                                                                | 1.92                                                 | 5.71                                                              | 2.00                                                                          | 6.66                                                                                                                                                                                                                                                                                                                 | 2.10                                                      | 7.29                                               | 2.17                                                              |                                                                                                           |                                                    |                                                    |                                             |                                                   |                                                    |                                                                                      |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                              |                                                                                     |                                                      |                                                                   |                                                                               |                                                                                                                                                                                                                                                                                                                      |                                                           | 3D                                                 | 0519244                                                           | 4                                                                                                         |                                                    |                                                    |                                             |                                                   |                                                    |                                                                                      |                                            |
| SY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MBOLS                                                                                                     | 5                                                                                            |                                                                                     |                                                      |                                                                   |                                                                               |                                                                                                                                                                                                                                                                                                                      |                                                           |                                                    | NOT                                                               | <b>TES</b>                                                                                                |                                                    |                                                    |                                             |                                                   |                                                    |                                                                                      |                                            |
| FR: Air flov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |                                                                                              |                                                                                     |                                                      |                                                                   | (r                                                                            | m <sup>3</sup> /min)                                                                                                                                                                                                                                                                                                 | 1                                                         |                                                    |                                                                   |                                                                                                           |                                                    |                                                    | acities wł                                  | nich inclu                                        | ude a de                                           | eduction                                                                             | for                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s factor<br>ng wet b                                                                                      | ulh tem                                                                                      | h                                                                                   |                                                      |                                                                   | /0                                                                            | °C)                                                                                                                                                                                                                                                                                                                  |                                                           |                                                    | indoo                                                             | or fan m                                                                                                  |                                                    |                                                    |                                             |                                                   |                                                    |                                                                                      |                                            |
| DB: Enterir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng dry bu                                                                                                 |                                                                                              |                                                                                     |                                                      |                                                                   | (°                                                                            | °C)                                                                                                                                                                                                                                                                                                                  | 2                                                         |                                                    |                                                                   |                                                                                                           |                                                    |                                                    | al (rated)                                  |                                                   |                                                    |                                                                                      |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | capacity<br>ole heatin<br>r input                                                                         | g capac                                                                                      | ity                                                                                 |                                                      |                                                                   | (k                                                                            | <w)<br><w)<br><w)< td=""><td>3</td><td></td><td>in the</td><td>l and SF<br/>e above<br/>lation.)</td><td>tables.</td><td>i be cale<br/>(Figures</td><td>culated b<br/>s out of t</td><td>iy interp<br/>he table</td><td>olation i<br/>es should</td><td>asing the</td><td>e tigu<br/>used</td></w)<></w)<br></w)<br> | 3                                                         |                                                    | in the                                                            | l and SF<br>e above<br>lation.)                                                                           | tables.                                            | i be cale<br>(Figures                              | culated b<br>s out of t                     | iy interp<br>he table                             | olation i<br>es should                             | asing the                                                                            | e tigu<br>used                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                              |                                                                                     |                                                      |                                                                   | , , , , , , , , , , , , , , , , , , ,                                         |                                                                                                                                                                                                                                                                                                                      | 4                                                         |                                                    | them                                                              | n with ar                                                                                                 | ound v                                             | alues in                                           | nentione<br>direct p                        | roportio                                          | n.                                                 | olease ca                                                                            | alculat                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                              |                                                                                     |                                                      |                                                                   |                                                                               |                                                                                                                                                                                                                                                                                                                      | 5                                                         |                                                    | Corre                                                             | icities ar<br>espondii<br>I differe                                                                       | ng refriq                                          | l on foll<br>gerant p                              | lowing co<br>piping ler                     | ondition<br>Igth:                                 | S:                                                 |                                                                                      | .5 m<br>m                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                              |                                                                                     |                                                      |                                                                   |                                                                               |                                                                                                                                                                                                                                                                                                                      | 6                                                         |                                                    |                                                                   |                                                                                                           |                                                    | nd Byp                                             | ass facto                                   | r (BF) ar                                         | e tabura                                           |                                                                                      |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                              |                                                                                     |                                                      |                                                                   |                                                                               |                                                                                                                                                                                                                                                                                                                      |                                                           |                                                    |                                                                   |                                                                                                           | -                                                  | 21                                                 |                                             |                                                   |                                                    |                                                                                      |                                            |

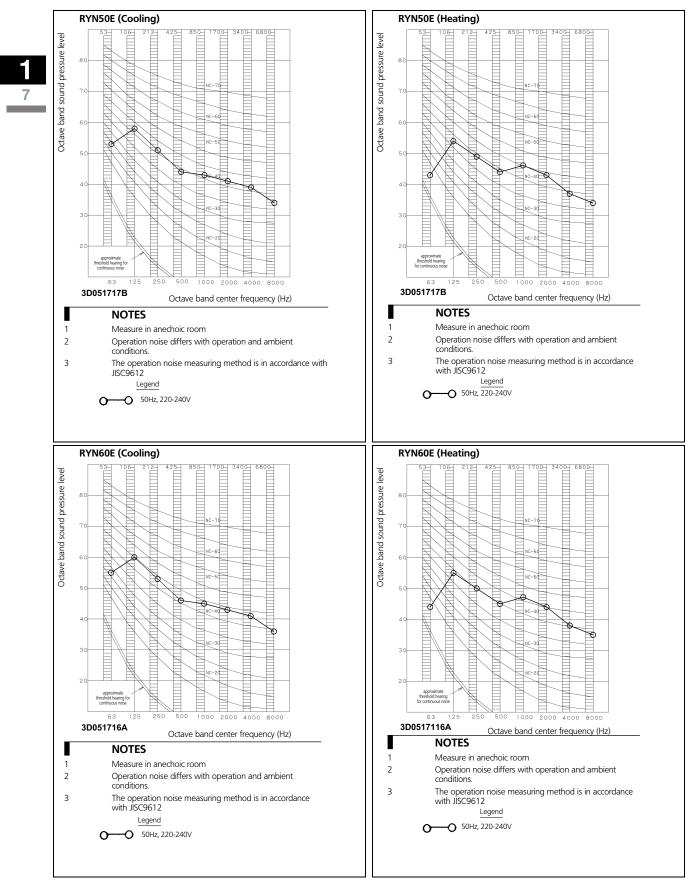

#### 5 Dimensional drawing & centre of gravity

#### 5 - 1 Dimensional drawing

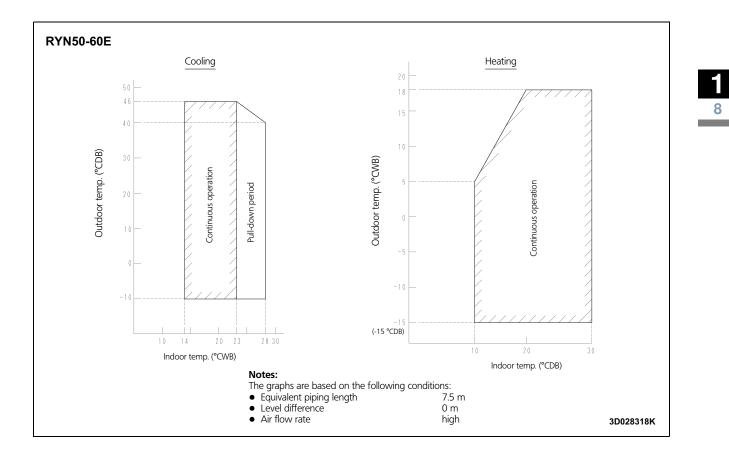



### 5 Dimensional drawing & centre of gravity

#### 5 - 2 Centre of gravity




#### 6 Piping diagram




### 7 Sound data

#### 7 - 1 Sound pressure spectrum



#### 8 Operation range



### 8 Operation range

